• High Power Laser and Particle Beams
  • Vol. 33, Issue 9, 094001 (2021)
Jinyu Wan1、2, Zheng Sun1、2, Xiang Zhang1、2, Yu Bai1、2, Chengying Tsai3, Paul Chu4, Senlin Huang5, Yi Jiao1、2、*, Yongbin Leng2、6, Biaobin Li1、2、7, Jingyi Li1、2, Nan Li1、2, Xiaohan Lu1、2、7, Cai Meng1、2, Yuemei Peng1、2, Sheng Wang1、2、7, and Chengyi Zhang1、2
Author Affiliations
  • 1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4College of Engineering and Applied Science, Nanjing University, Nanjing 210023, China
  • 5Institute of Heavy Ion Physics & State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 6Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
  • 7China Spallation Neutron Source, Dongguan Guangdong 523803, China
  • show less
    DOI: 10.11884/HPLPB202133.210199 Cite this Article
    Jinyu Wan, Zheng Sun, Xiang Zhang, Yu Bai, Chengying Tsai, Paul Chu, Senlin Huang, Yi Jiao, Yongbin Leng, Biaobin Li, Jingyi Li, Nan Li, Xiaohan Lu, Cai Meng, Yuemei Peng, Sheng Wang, Chengyi Zhang. Machine learning applications in large particle accelerator facilities: review and prospects[J]. High Power Laser and Particle Beams, 2021, 33(9): 094001 Copy Citation Text show less
    References

    [2] Durante M, Golubev A, Park W Y, et al. Applied nuclear physics at the new high-energy particle accelerator facilities[J]. Physics Reports, 800, 1-37(2019).

    [3] Olive K A. Review of particle physics[J]. Chinese Physics C, 38, 090001(2014).

    [4] Tobias C A. The future of heavy-ion science in biology and medicine[J]. Radiation Research, 103, 1-33(1985).

    [5] Rodríguez-Fernández L. Particle accelerator applications: ion and electron irradiation in materials science, biology and medicine[J]. AIP Conference Proceedings, 1271, 159-179(2010).

    [6] Hamm R W, Hamm M E. Industrial accelerats their applications[M]. Singape: Wld Scientific Publishing Co. Pte. Ltd., 2012.

    [7] Pohlit W. Optimization of cancer treatment with accelerat produced radiations[C]Proceedings of the 1st European Particle Accelerat Conference. 1988.

    [8] Antolak A J. Overview of accelerator applications for security and defense[J]. Reviews of Accelerator Science and Technology, 8, 27-36(2015).

    [9] Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2, 100097(2021).

    [11] Silver D, Huang A, Maddison C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 529, 484-489(2016).

    [12] Zdeborová L. Machine learning: new tool in the box[J]. Nature Physics, 13, 420-421(2017).

    [13] Butler K T, Davies D W, Cartwright H, et al. Machine learning for molecular and materials science[J]. Nature, 559, 547-555(2018).

    [14] Tarca A L, Carey V J, Chen Xuewen, et al. Machine learning and its applications to biology[J]. PLoS Computational Biology, 3, e116(2007).

    [15] Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective[J]. Artificial Intelligence in Medicine, 23, 89-109(2001).

    [16] Kiran B R, Sobh I, Talpaert V, et al. Deep reinforcement learning for autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems(2021).

    [17] Bishop C M. Pattern recognition machine learning[M]. New Yk: Springer, 2006.

    [18] Rodríguez G G, Gonzalez-Cava J M, Pérez J A M. An intelligent decision support system for production planning based on machine learning[J]. Journal of Intelligent Manufacturing, 31, 1257-1273(2020).

    [19] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align translate[DBOL]. arXiv preprint arXiv: 1409.0473, 2016.

    [20] Peterson C. Track finding with neural networks[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 279, 537-545(1989).

    [21] JACoW. IPAC2019. Proceedings of the 10th international particle accelerat conference[EBOL]. https:ipac2019.vrws.de.

    [22] JACoW. PCaPAC2018. Proceedings of the 12th international wkshop on emerging technologies scientific facilities controls[EBOL]. http:accelconf.web.cern.chAccelConfpcapac2018.

    [23] JACoW. ICALEPCS2019. Proceedings of the 17th international conference on accelerat large experimental physics control systems[EBOL]. http:icalepcs2019.vrws.de.

    [24] Edelen A, Mayes C, Bowring D, et al. Opptunities in machine learning f particle accelerats[DBOL]. arXiv preprint arXiv: 1811.03172, 2018.

    [25] Scheinker A, Emma C, Edelen A L, et al. Advanced control methods f particle accelerats (ACM4PA) 2019 wkshop rept[DBOL]. arXiv preprint arXiv: 2001.05461, 2020.

    [26] Arpaia P, Azzopardi G, Blanc F, et al. Machine learning for beam dynamics studies at the CERN Large Hadron Collider[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 985, 164652(2021).

    [27] Ottavio T D, Binello K, Brown K A, et al. Experience with machine learning in accelerat controls[C]Proceedings of the 16th International Conference on Accelerat Large Experimental Control Systems. 2017: 258264.

    [28] Ratner D F, Huang X, Mayes C E, et al. Rept on the first ICFA miniwkshop on machine learning f particle accelerats[C]Proceedings of the 60th ICFA Advanced Beam Dynamics Wkshop on Future Light Sources. Shanghai, China. 2018.

    [29] Biedron S G. Machine learning, data mining big data hling f accelerats[C]Proceedings of IPAC19. Melbourne, Australia. 2019.

    [30] Ayodele T O. Types of machine learning algithms[M]Zhang Yagang. New Advances in Machine Learning. London: InTechOpen, 2010: 1948.

    [31] Bottou L. Stochastic gradient descent tricks[M]Montavon G, r G B, Müller K R. Neural wks: Tricks of the Trade. 2nd ed. Berlin: Springer, 2012: 421436.

    [32] Hinton G, Srivastava N, Swersky K. Neural wks f machine learning lecture 6a overview of minibatch gradient descent[R]. http:www.cs.tonto.edu~hintoncourseralecture6lec6.pdf.

    [33] Aalen O O. A linear regression model for the analysis of life times[J]. Statistics in Medicine, 8, 907-925(1989).

    [34] Ostertagová E. Modelling using polynomial regression[J]. Procedia Engineering, 48, 500-506(2012).

    [35] Swain P H, Hauska H. The decision tree classifier: design and potential[J]. IEEE Transactions on Geoscience Electronics, 15, 142-147(1977).

    [36] Belgiu M, Drăguţ L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31(2016).

    [37] Noble W S. What is a support vector machine?[J]. Nature Biotechnology, 24, 1565-1567(2006).

    [38] Rasmussen C E, Williams C K I. Gaussian processes f regression[M]Touretzky D S, Mozer M C, Hasselmo M E, et al. Advances in Neural Infmation Processing Systems 8. Cambridge: MIT Press, 1996: 514520.

    [39] Cybenko G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 2, 303-314(1989).

    [40] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural wk f modelling sentences[DBOL]. arXiv preprint arXiv: 1404.2188, 2014.

    [41] Zaremba W, Sutskever I, Vinyals O. Recurrent neural wk regularization[DBOL]. arXiv preprint arXiv: 1409.2329, 2014.

    [42] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 9, 1735-1780(1997).

    [43] Likas A, Vlassis N, Verbeek J J. The global k-means clustering algorithm[J]. Pattern Recognition, 36, 451-461(2003).

    [44] Park H S, Jun C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 36, 3336-3341(2009).

    [45] Khan K, Rehman S U, Aziz K, et al. DBSCAN: past, present future[C]The Fifth International Conference on the Applications of Digital Infmation Web Technologies (ICADIWT 2014). Bangale: IEEE, 2014: 232238.

    [46] Wold S, Esbensen K, Geladi P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2, 37-52(1987).

    [47] Liou C Y, Cheng Weichen, Liou J W, et al. Autoencoder for words[J]. Neurocomputing, 139, 84-96(2014).

    [48] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).

    [49] Darling D A, Siegert A J F. The first passage problem for a continuous Markov process[J]. The Annals of Mathematical Statistics, 24, 624-639(1953).

    [50] Watkins C J C H, Dayan P. Q-learning[J]. Machine Learning, 8, 279-292(1992).

    [51] Hester T, Vecerik M, Pietquin O, et al. Deep Qlearning from demonstrations[C]Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018: 32233230.

    [52] Silver D, Lever G, Heess N, et al. Deterministic policy gradient algithms[C]Proceedings of the 31st International Conference on International Conference on Machine Learning Volume 32.2014: I387I395.

    [53] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinfcement learning[DBOL]. arXiv preprint arXiv: 1509.02971, 2015.

    [54] Chao A W. Physics of collective instabilities in high energy accelerats[M]. New Yk: Wiley, 1993.

    [55] Wan Weishi, Cary J R. Method for enlarging the dynamic aperture of accelerator lattices[J]. Physical Review Accelerators and Beams, 4, 084001(2001).

    [56] Bilderback D H, Elleaume P, Weckert E. Review of third and next generation synchrotron light sources[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 38, S773-S797(2005).

    [57] Yang Lingyun, Robin D, Sannibale F, et al. Global optimization of an accelerator lattice using multiobjective genetic algorithms[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 609, 50-57(2009).

    [58] Huang Xiaobiao, Safranek J. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 757, 48-53(2014).

    [59] Van der Veken F, Azzopardi G, Blanc F, et al. Application of machine learning techniques at the CERN Large Hadron Collider[C]Proceedings of the European Physical Society Conference on High Energy Physics (EPSHEP2019). 2020.

    [60] Li Yongjun, Cheng Weixing, Yu Lihua, et al. Genetic algorithm enhanced by machine learning in dynamic aperture optimization[J]. Physical Review Accelerators and Beams, 21, 054601(2018).

    [61] Wan Jinyu, Chu P, Jiao Yi, et al. Improvement of machine learning enhanced genetic algorithm for nonlinear beam dynamics optimization[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 946, 162683(2019).

    [62] Edelen A, Neveu N, Frey M, et al. Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems[J]. Physical Review Accelerators and Beams, 23, 044601(2020).

    [63] Wan Jinyu, Chu P, Jiao Yi. Neural network-based multiobjective optimization algorithm for nonlinear beam dynamics[J]. Physical Review Accelerators and Beams, 23, 081601(2020).

    [64] Wang Faya, Song Minghao, Edelen A, et al. Machine learning f design optimization of stage ring nonlinear dynamics[DBOL]. arXiv preprint arXiv: 1910.14220, 2019.

    [65] Scheinker A, Bohler D, Tomin S, et al. Model-independent tuning for maximizing free electron laser pulse energy[J]. Physical Review Accelerators and Beams, 22, 082802(2019).

    [66] Ruggiero F. Single-beam collective effects in the LHC[J]. Particle Accelerators, 50, 83-104(1995).

    [67] Nagaitsev S, Huang Z, Power J, et al. Accelerat beam physics research goals opptunities[DBOL]. arXiv preprint arXiv: 2101.04107, 2021.

    [68] Tsai C Y, Douglas D, Li R, Tennant C. Linear microbunching analysis for recirculation machines[J]. Physical Review Accelerators and Beams, 19, 114401(2016).

    [69] Tsai C Y, Derbenev Y S, Douglas D, et al. Vlasov analysis of microbunching instability for magnetized beams[J]. Physical Review Accelerators and Beams, 20, 054401(2017).

    [70] Boltz T, Brosipresenter M, Bründermann E, et al. Studies of longitudinal dynamics in the microbunching instability using machine learning[C]Proceedings of the 9th International Particle Accelerat Conference. Vancouver: JACoW Publishing, 2018: 32773279.

    [71] Ögren J, Gohil C, Schulte D. Surrogate modeling of the CLIC final-focus system using artificial neural networks[J]. Journal of Instrumentation, 16, P05012(2021).

    [72] Tsai C Y, Wu Juhao, Yang Chuan, et al. Sideband instability analysis based on a one-dimensional high-gain free electron laser model[J]. Physical Review Accelerators and Beams, 20, 120702(2017).

    [73] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 4, 641-647(2010).

    [74] Ivanov A, Agapov I. Physics-based deep neural networks for beam dynamics in charged particle accelerators[J]. Physical Review Accelerators and Beams, 23, 074601(2020).

    [75] Price T J, Ctes H M C, Dunning D J, et al. Virtual VELACLARA: the development of a virtual accelerat[C]Proceedings of the 9th International Particle Accelerat Conference. Vancouver: JACoW Publishing, 2018: 47734776.

    [76] Vay J L, Sagan D, Huebl A, et al. EndtoEnd Virtual Accelerats (EVA)[EBOL]. https:www.snowmass21.gdocsfilessummariesCompFSNOWMASS21CompF2_CompF0AF1_AF0_Vay067.pdf.

    [77] Ng J Q, Ryne R, Théve M, et al. Center(s) f Accelerat Beam physics modeling[EBOL]. https:www.snowmass21.gdocsfilessummariesCompFSNOWMASS21CompF2_CompF0AF1_AF0_Vay069.pdf.

    [78] Edelen A L, Biedron S G, Chase B E, et al. Neural networks for modeling and control of particle accelerators[J]. IEEE Transactions on Nuclear Science, 63, 878-897(2016).

    [79] Edelen A L, Biedron S G, Milton S V, et al. Initial experimental results of a machine learningbased temperature control system f an RF gun[DBOL]. arXiv preprint arXiv: 1511.01883, 2015.

    [80] Edelen A L, Biedron S G, Milton S V, et al. Resonant frequency control f the PIPII inject test RFQ: control framewk initial results[C]Proceedings of the NAPAC2016.2016: 109112.

    [81] Bowring D, Biedron S, Chase B, et al. Resonant control f Fermilab''s PXIE RFQ[R]. Batavia: Fermi National Accelerat Lab. (FNAL), 2016.

    [82] Edelen A L, Biedron S G, Milton S V, et al. Neural wk model of the PXIE RFQ cooling system resonant frequency response[C]Proceedings of the 7th International Particle Accelerat Conference. 2016: 41314133.

    [83] Edelen J P, Edelen A L, Bowring D, et al. First principles modeling of RFQ cooling system and resonant frequency responses for Fermilab’s PIP-II injector test[J]. IEEE Transactions on Nuclear Science, 64, 800-808(2017).

    [84] Kong Y B, Hur M G, Lee E J, et al. Predictive ion source control using artificial neural network for RFT-30 cyclotron[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 806, 55-60(2016).

    [85] Cruz J A D, Biedron S, MartinezRamon M, et al. Studies in applying machine learning to LLRF resonance control in superconducting RF cavities[DBOL]. arXiv preprint arXiv: 1910.07648, 2019.

    [86] Schirmer D. Intelligent controls f the electron stage ring DELTA[C]Proceedings of the 9th International Particle Accelerat Conference. 2018: 48554858.

    [87] Tennant C, Carpenter A, Powers T, et al. Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory[J]. Physical Review Accelerators and Beams, 23, 114601(2020).

    [88] Wielgosz M, Skoczeń A, Mertik M. Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 867, 40-50(2017).

    [89] Wielgosz M, Mertik M, Skoczeń A, et al. The model of an anomaly detector for HiLumi LHC magnets based on recurrent neural networks and adaptive quantization[J]. Engineering Applications of Artificial Intelligence, 74, 166-185(2018).

    [90] Wielgosz M, Skoczen A, Wiatr K. Looking f a crect solution of anomaly detection in the LHC machine protection system[C]2018 International Conference on Signals Electronic Systems (ICSES). Kraków: IEEE, 2018: 257262.

    [91] Fol E, Tomás R, de Portugal J C, et al. Detection of faulty beam position monitors using unsupervised learning[J]. Physical Review Accelerators and Beams, 23, 102805(2020).

    [92] Fol E, de Ptugal J M C, Tomás R. Unsupervised machine learning f detection of faulty beam position monits[C]Proceedings of the 10th International Particle Accelerat Conference. Melbourne, Australia: JACoW Publishing, 2019: 26682671.

    [93] Kube G. Beam diagnostic requirements: an overview[R]. Tuusula: CAS CERN Accelerat School: Beam Instrumentation, 2018.

    [94] Fol E, Carlier F, de Ptugal J M C, et al. Machine learning methods f optics measurements crections at LHC[C]Proceedings of the 9th International Particle Accelerat Conference. 2018: 19671970.

    [95] Jiang R T, Leng Y B, Chen F Z, et al. Identification of faulty beam position monit based clustering by fast search find of density peaks[C]Proceedings of the 7th International Beam Instrumentation Conference (IBIC''18). Shanghai. 2018: 114117.

    [96] Vilsmeier D, Sapinski M, Singh R, et al. Reconstructing space-charge distorted IPM profiles with machine learning algorithms[J]. Journal of Physics: Conference Series, 1067, 072003(2018).

    [97] Vilsmeier D, Sapinski M, Singh R. Space-charge distortion of transverse profiles measured by electron-based ionization profile monitors and correction methods[J]. Physical Review Accelerators and Beams, 22, 052801(2019).

    [98] Sanchez-Gonzalez A, Micaelli P, Olivier C, et al. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning[J]. Nature Communications, 8, 15461(2017).

    [99] Emma C, Edelen A, Hogan M J, et al. Machine learning-based longitudinal phase space prediction of particle accelerators[J]. Physical Review Accelerators and Beams, 21, 112802(2018).

    [100] Ren X, Edelen A, Lutman A, et al. Temporal power reconstruction for an X-ray free-electron laser using convolutional neural networks[J]. Physical Review Accelerators and Beams, 23, 040701(2020).

    [101] Xu Xingyi, Zhou Yimei, Leng Yongbin. Machine learning application in bunch longitudinal phase measurement[C]Proceedings of the 10th International Particle Accelerat Conference. 2019: 26252628.

    [102] Xu Xingyi, Zhou Yimei, Leng Yongbin. Machine learning based image processing technology application in bunch longitudinal phase information extraction[J]. Physical Review Accelerators and Beams, 23, 032805(2020).

    [103] Gao Bo, Chen Jie, Leng Yongbin, et al. Machine learning applied to predict transverse oscillation at SSRF[C]Proceedings of the 7th International Beam Instrumentation Conference (IBIC 2018). Shanghai: JACoW Publishing, 2018: 512515.

    [104] Scheinker A, Cropp F, Paiagua S, et al. Demonstration of adaptive machine learningbased distribution tracking on a compact accelerat: towards enabling modelbased 6D noninvasive beam diagnostics[DBOL]. arXiv preprint arXiv: 2102.10510, 2021.

    [105] Valentino G, Aßmann R, Bruce R, et al. Semiautomatic beam-based LHC collimator alignment[J]. Physical Review Accelerators and Beams, 15, 051002(2012).

    [106] Azzopardi G, Valentino G, Salvachua B, et al. Software architecture f automatic LHC collimat alignment using machine learning[C]Proceedings of the 17th ICALEPCS. 2019: 7885.

    [107] Azzopardi G, Salvachua B, Valentino G, et al. Operational results on the fully automatic LHC collimator alignment[J]. Physical Review Accelerators and Beams, 22, 093001(2019).

    [108] Huang Xiaobiao. Robust simplex algorithm for online optimization[J]. Physical Review Accelerators and Beams, 21, 104601(2018).

    [109] Huang Xiaobiao, Corbett J, Safranek J, et al. An algorithm for online optimization of accelerators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 726, 77-83(2013).

    [110] Nelder J A, Mead R. A simplex method for function minimization[J]. The Computer Journal, 7, 308-313(1965).

    [111] Scheinker A, Pang Xiaoying, Rybarcyk L. Model-independent particle accelerator tuning[J]. Physical Review Accelerators and Beams, 16, 102803(2013).

    [112] Chung Y, Decker G, Evans K. Closed bit crection using singular value decomposition of the response matrix[C]Proceedings of International Conference on Particle Accelerats. Washington: IEEE, 1993: 22632265.

    [113] Bozoki E, Friedman A. Neural wks bit control in accelerats[R]. Upton: Brookhaven National Lab., 1994.

    [114] Meier E, Tan Y R E, LeBlanc G S. bit crection studies using neural wks[C]Proceedings of the 3rd International Particle Accelerat Conference. 2012: 28372839.

    [116] Meier E, Mgan M J, Biedron S G, et al. Electron beam stabilization test results using a neural wk hybrid controller at the Australian Synchrotron Linac Coherent Light Source[C]Proceedings of FEL2009. Liverpool, 2009: 766771.

    [117] Boldeman J W, Einfeld D. The physics design of the Australian synchrotron storage ring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 521, 306-317(2004).

    [118] Leemann S C, Amstutz P, Ehrlichman M P, et al. First attempts at applying machine learning to ALS stage ring stabilization[C]Proceedings of the 10th International Particle Accelerat Conference. Melbourne: JACoW Publishing, 2019: 16311634.

    [119] Leemann S C, Liu S, Hexemer A, et al. Demonstration of machine learning-based model-independent stabilization of source properties in synchrotron light sources[J]. Physical Review Letters, 123, 194801(2019).

    [120] Boltz T, Brosi M, Bründermann E, et al. Feedback design f control of the microbunching instability based on reinfcement learning[C]Proceedings of the ICFA miniWkshop on Mitigation of Coherent Beam Instabilities in Particle Accelerats. 2020, 9: 227229.

    [121] Ruth R D, Chao A W, Morton P L, et al. A plasma wake field accelerator[J]. Particle Accelerators, 17, 171-189(1984).

    [122] Ratner D F, Chao A W. Steady-state microbunching in a storage ring for generating coherent radiation[J]. Physical Review Letters, 105, 154801(2010).

    [123] Scheinker A, Edelen A, Bohler D, et al. Demonstration of model-independent control of the longitudinal phase space of electron beams in the linac-coherent light source with femtosecond resolution[J]. Physical Review Letters, 121, 044801(2018).

    CLP Journals

    [1] Yi Jiao, Zhenghe Bai. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34(10): 104004

    Jinyu Wan, Zheng Sun, Xiang Zhang, Yu Bai, Chengying Tsai, Paul Chu, Senlin Huang, Yi Jiao, Yongbin Leng, Biaobin Li, Jingyi Li, Nan Li, Xiaohan Lu, Cai Meng, Yuemei Peng, Sheng Wang, Chengyi Zhang. Machine learning applications in large particle accelerator facilities: review and prospects[J]. High Power Laser and Particle Beams, 2021, 33(9): 094001
    Download Citation