• Optics and Precision Engineering
  • Vol. 23, Issue 5, 1288 (2015)
TANG Yang*, GUO Li-da, ZHANG Zeng-guang, and CHEN Jie
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20152305.1288 Cite this Article
    TANG Yang, GUO Li-da, ZHANG Zeng-guang, CHEN Jie. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate[J]. Optics and Precision Engineering, 2015, 23(5): 1288 Copy Citation Text show less
    References

    [1] SHEN D ZH, MEI Z X, LIANG H L, et al.. ZnO-based materials, heterojunction and photoelectronic devices [J]. Chin. J. Lumin., 2014, 35: 1-60. (in Chinese)

    [2] GAO L L, XU Y, ZHANG M, et al.. Effects of Mg contents on photoelectric properties and N doped behaviors in N doped MgZnO films [J].Opt. Precision Eng., 2014, 22: 1198-1203. (in Chinese)

    [3] ZHENG G F, HE G Q, LIU H Y, et al.. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone [J].Opt. Precision Eng., 2014, 22: 1555-1561. (in Chinese)

    [4] ZHAI Y J, LI J H, CHEN X Y, et al.. Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity [J]. Chinese Optics, 2014, 7: 124-130. (in Chinese)

    [5] ZHOU J, HE X L, JIN H, et al.. Flexible ZnO thin film SAW device on polyimide substrate [J].Opt. Precision Eng., 2014, 22: 346-350. (in Chinese)

    [6] CHEN G W, ZHU R. Silicon micromachined resonant accelerometer based on ZnO nanowire [J].Opt. Precision Eng., 2009, 17: 1279-1285. (in Chinese)

    [7] LI H, JIAO S, BAI S, et al.. Precursor-controlled synthesis of different ZnO nanostructures by the hydrothermal method [J]. Phys. Status Solidi (a), 2013, 211: 595-600.

    [8] LI H, JIAO S, LI H, et al.. Growth and characterization of ZnO nanoflakes by hydrothermal method: effect of hexamine concentration [J]. J. Mater. Sci.-Mater. Electron., 2014, 25: 2569-2573.

    [9] GAO L L, XU Y, ZHANG M, et al.. Effects of Mg content on the optical properties of MgZnO films [J]. Chin. J. Liquid Cryst. Displ., 2014, 29: 350-354. (in Chinese)

    [10] GAO L L, LIU J SH, ZHANG M, et al.. Preparation and characterization of N doped P-type MgZnO film [J]. Chin. J. Liquid Cryst. Displ., 2014, 29: 499-503. (in Chinese)

    [11] KIM D, YUN I, KIM H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells [J]. Curr.Appl.Phys., 2010, 10: 459-462.

    [12] LUKA G, WITKOWSKI B S, WACHNICKI L. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition [J]. Mater. Sci. Eng. B, 2014, 186: 15-20.

    [13] COMAN T, URSU E L, NICA V, et al.. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition [J]. Thin Solid Films, 2014, 571: 198-205.

    [14] KUMAR A, HUANG N, STAEDLER T, et al.. Mechanical characterization of aluminum doped zinc oxide (Al∶ZnO) nanorods prepared by sol-gel method [J]. Appl. Surf. Sci., 2013, 265: 758-763.

    [15] CHEN Z, ZHAN G, WU Y. Sol-gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology [J]. J. Alloys Compd., 2014, 587: 692-697.

    [16] EYCIMEN D N, KODOLBAS A O, EKERIM A.Effects of argon pressure and r.f. power on magnetron sputtered aluminum doped ZnO thin films [J]. J. Cryst. Growth, 2014, 394: 116-125.

    [17] TANG Y, CHEN J. Optical band gap blue shift and stokes shift in Al-doped ZnO nanorods by electrodeposition [J]. Chin. J. Lumin., 2014, 10: 1165-1171. (in Chinese)

    [18] SUN S J, JIAO SH J, GAO SH Y, et al.. Fabrication and growth mechanism of ZnO nanorods by electrochemical method [J]. Chin. J. Lumin., 2012, 33: 128-134. (in Chinese)

    [19] JIAO S, ZHANG K, BAI S, et al.. Controlled morphology evolution of ZnO nanostructures in the electrochemical deposition: From the point of view of chloride ions [J]. Electrochim. Acta, 2013, 111: 64-70.

    [20] SUN S, JIAO S, ZHANG K, et al.. Nucleation effect and growth mechanism of ZnO nanostructures by electrodeposition from aquous zinc nitrate baths [J]. J. Cryst. Growth, 2012, 359: 15-19.

    [21] CHO S, JUNG S, JANG J, et al.. Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through use of a seed layer [J]. Cryst. Growth Des., 2008, 8 (12): 4553-4558.

    [22] KIM C E, MOON P, KIM S, et al.. Effect of carrier concentration on optical bandgap shift in ZnO: Ga thin films [J]. Thin Solid Films, 2010, 518: 6304-6307.

    CLP Journals

    [1] ZHANG Xiao-zhou, WANG Pei-hong, LIU Xing, XIA Yan-ping, GONG Ze-zhou. Fabrication of ZnO flexible nanogenerator by electrodeposition[J]. Optics and Precision Engineering, 2018, 26(9): 2222

    TANG Yang, GUO Li-da, ZHANG Zeng-guang, CHEN Jie. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate[J]. Optics and Precision Engineering, 2015, 23(5): 1288
    Download Citation