• High Power Laser and Particle Beams
  • Vol. 36, Issue 10, 105002 (2024)
Xiangqian Liu, Ying Chen, Zihuang Peng, Liuxia Li*, and Hengxin He
Author Affiliations
  • School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.11884/HPLPB202436.240176 Cite this Article
    Xiangqian Liu, Ying Chen, Zihuang Peng, Liuxia Li, Hengxin He. Development of distributed all-solid-state waveform adjustable high-voltage pulse generator[J]. High Power Laser and Particle Beams, 2024, 36(10): 105002 Copy Citation Text show less

    Abstract

    To meet the different requirements of different fields for parameters such as amplitude, pulse width, waveform, and repetition rate, a distributed all-solid-state waveform adjustable high-voltage pulse generator has been developed based on the distributed concept. This pulse generator comprises multiple sub-modules with identical structures. Each module is based on the all-solid-state Marx with the half-bridge structure, while the drive uses a magnetic isolation scheme. Moreover, every module has a uniformly designed connection terminal and communication protocol. Multiple modules can operate independently or directly in series to achieve superior performance. The entire device features a layered design and compact structure. This paper elaborates on the pulse generator's circuit topology, working principle, and waveform generation method. Finally, three 9-level test prototypes with 8-level basic units have been constructed, which can produce a 25-level unipolar arbitrary high-voltage waveform in series. The output peak voltage can reach 16 kV.
    $ {U_{{\mathrm{peak}}}} = mn \times {U_{\mathrm{dc}}} $(1)

    View in Article

    $ {C_{\rm{eq}}} = {C_0}/mn $(2)

    View in Article

    $ U\left( t \right) = {U_0}{{\mathrm{e}}^{ - t/\tau }} = mn{U_{{\mathrm{dc}}}}{{\mathrm{e}}^{ - t/({R_L}{C_{\rm{eq}}})}} = mn{U_{{\mathrm{dc}}}}{{\mathrm{e}}^{ - mnt/{R_L}{C_0}}} $(3)

    View in Article

    $ \Delta U = mn{U_{{\mathrm{dc}}}}\left( {1 - {{\mathrm{e}}^{ - mnt/({R_L}{C_0})}}} \right) $(4)

    View in Article

    $ {u_{{\mathrm{out}}}}(t) = {U_{\mathrm{p}}}{{\mathrm{e}}^{ - {{(t - {t_{\mathrm{p}}})}^2}}} $(5)

    View in Article

    $ {U_{{\mathrm{p}}}} = N \times {U_{{\mathrm{dc}}}} $(6)

    View in Article

    $ k = \left[ {U/{U_{{\mathrm{dc}}}}} \right] $(7)

    View in Article

    $ {T_{\rm{sk}}} = \left\{ {{t_{\rm{sk}}}\left| {{U_{\rm{p}}}{{\mathrm{e}}^{ - {{(t_{\rm{sk}} - {t_{\rm{p}}})}^2}}} \geqslant \left( {k - 0.5} \right){U_{\rm{dc}}}} \right.} \right\} $(8)

    View in Article

    $ {T_{\rm{ek}}} = \left\{ {{t_{\rm{ek}}}\left| {{U_{\rm{p}}}{{\mathrm{e}}^{ - {{(t_{\rm{ek}} - {t_{\rm{p}}})}^2}}} < \left( {k - 0.5} \right){U_{\rm{dc}}}} \right.} \right\} $(9)

    View in Article

    $ {T_{\rm{sk}}} = \left\{ {{t_{\rm{sk}}}\left| {f\left( {{t_{\rm{sk}}}} \right) \geqslant \left( {k - 0.5} \right){U_{\rm{dc}}}} \right.} \right\} $(10)

    View in Article

    $ {T_{\rm{ek}}} = \left\{ {{t_{\rm{ek}}}\left| {f\left( {{t_{\rm{ek}}}} \right) < \left( {k - 0.5} \right){U_{\rm{dc}}}} \right.} \right\} $(11)

    View in Article

    $ N = mn $(12)

    View in Article

    $ {U_{\rm{s}}} = {U_{\rm{p}}} \times {C_{\rm{eq}}}/({C_{\rm{eq}}} + {C_{\rm{p}}}) $(13)

    View in Article

    $ U_{\rm{s}} \geqslant (1 - 2{\text{%}} ){U_{\mathrm{p}}} $(14)

    View in Article

    Xiangqian Liu, Ying Chen, Zihuang Peng, Liuxia Li, Hengxin He. Development of distributed all-solid-state waveform adjustable high-voltage pulse generator[J]. High Power Laser and Particle Beams, 2024, 36(10): 105002
    Download Citation