[6] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
[8] LI S, DOU Y, XU J, et al. Designing a broad locally-resonant bandgap in a phononic crystals[J]. Phys Lett A, 2019, 383: 1371-1377.
[10] QI Y, SONG T, WEN X D, et al. Simulations on the wide bandgap characteristics of a two-dimensional tapered scatterer phononic crystal slab at low frequency[J]. Phys Lett A, 2020, 384(35): 126885.
[14] KRYLOV V V, TILMAN F. Acoustic 'black holes' for flexural waves as effective vibration dampers[J]. J Sound Vib, 2004, 274(3-5): 605-619.
[15] FARHAT M, ENOCH S, GUENNEAU S, et al. Broadband cylindrical acoustic cloak for linear surface waves in a fluid[J]. Phys Rev Lett, 2008, 101(13): 134501.
[16] JI H, LIANG Y, QIU J, et al. Enhancement of vibration based energy harvesting using compound acoustic black holes[J]. Mech Syst Sign Process, 2019, 132: 441-456.
[17] ZHAO C, ZHENG J, SANG T, et al. Computational analysis of phononic crystal vibration isolators via FEM coupled with the acoustic black hole effect to attenuate railway-induced vibration[J]. Constr Build Mater, 2021, 283(4): 122802.
[19] XU Y L, TIAN X G, CHEN C Q. Band structures of two dimensional solid/air hierarchical phononic crystals[J]. Phys B, 2012, 407(12): 1995-2001.