• Acta Physica Sinica
  • Vol. 69, Issue 17, 170701-1 (2020)
Mao-Liang Shen1 and Yan Zhang1、2、3、*
Author Affiliations
  • 1School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
  • 3College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.7498/aps.69.20200784 Cite this Article
    Mao-Liang Shen, Yan Zhang. Flexible sensor and energy storage device based on piezoelectric nanogenerator[J]. Acta Physica Sinica, 2020, 69(17): 170701-1 Copy Citation Text show less
    Internet of things (IOT) based on sensor network[1].
    Fig. 1. Internet of things (IOT) based on sensor network[1].
    (a) Schematic and (b) piezoelectric output response in different gas environments of ZnO NWs-PENG based self-driven gas sensor[22]; (c) schematic and (d) output voltage at different concentrations of ethanol gas of olfactory electronic skin based on PANI/ PTFE/PANI sandwich nanostructure[28].
    Fig. 2. (a) Schematic and (b) piezoelectric output response in different gas environments of ZnO NWs-PENG based self-driven gas sensor[22]; (c) schematic and (d) output voltage at different concentrations of ethanol gas of olfactory electronic skin based on PANI/ PTFE/PANI sandwich nanostructure[28].
    Self-driven H2S gas sensor based on flexible PENG[23]: (a) The sensing mechanism of vulcanization reaction; (b) response process; (c) recovery process.
    Fig. 3. Self-driven H2S gas sensor based on flexible PENG[23]: (a) The sensing mechanism of vulcanization reaction; (b) response process; (c) recovery process.
    Self-driven pressure sensors based on flexible PENG: (a) The weight sensor based on the OPNG can distinguish the subjects with different weights[37]; (b) the output response of vibration sensor based on the OPNG in different application conditions[37]; (c) self-powered flexible pressure sensor based on P(VDF-TrFE) nanowire arrays can be used for acoustic detection[43]; (d) sound pressure sensor based on P(VDF-TrFE)/BaTiO3 piezoelectric reinforced nanocomposite microcolumn arrays can be used to monitor sound pressure changes[44].
    Fig. 4. Self-driven pressure sensors based on flexible PENG: (a) The weight sensor based on the OPNG can distinguish the subjects with different weights[37]; (b) the output response of vibration sensor based on the OPNG in different application conditions[37]; (c) self-powered flexible pressure sensor based on P(VDF-TrFE) nanowire arrays can be used for acoustic detection[43]; (d) sound pressure sensor based on P(VDF-TrFE)/BaTiO3 piezoelectric reinforced nanocomposite microcolumn arrays can be used to monitor sound pressure changes[44].
    [in Chinese]
    Fig. 5. [in Chinese]
    Self-driven biosensors based on flexible PENG are used to monitor (a) finger muscle movement, breathing, heartbeat pulses, and low-intensity sound waves[43], (b) four different breathing modes: deep breathing, gasping, dyspnea, and normal breathing[44], (c) human physiological activities such as blinking, vocalization, arm bending, radial artery pulse / heart beating, etc[54].
    Fig. 5. Self-driven biosensors based on flexible PENG are used to monitor (a) finger muscle movement, breathing, heartbeat pulses, and low-intensity sound waves[43], (b) four different breathing modes: deep breathing, gasping, dyspnea, and normal breathing[44], (c) human physiological activities such as blinking, vocalization, arm bending, radial artery pulse / heart beating, etc[54].
    [in Chinese]
    Fig. 5. [in Chinese]
    E-skin (biological) sensors based on flexible PENG: (a)–(c) E-skin tactile sensor based on NiO@SiO2/PVDF nanocomposite film[57]; (d) self-powered E-skin based on the coupled process of piezoelectric-enzyme reaction can be used to detect glucose levels in body fluids[11].
    Fig. 6. E-skin (biological) sensors based on flexible PENG: (a)–(c) E-skin tactile sensor based on NiO@SiO2/PVDF nanocomposite film[57]; (d) self-powered E-skin based on the coupled process of piezoelectric-enzyme reaction can be used to detect glucose levels in body fluids[11].
    Internal integrated SCPC with "sandwich" structure: (a) An integrated SCPC based on PVDF nano-film[9]; (b) flexible SCPC based on PVDF-graphene nanosheets[66]; (c) CuO / PVDF nanocomposite film based novel SCPC[67]; (d) SCPC based on PVDF-PZT nanocomposite film[68]; (e) mesoporous PVDF nano-film can be used as piezoelectric separator of SCPC[69]; (f) all-solid-state flexible SCPC based on mesoporous PVDF-LiPF6 film[70].
    Fig. 7. Internal integrated SCPC with "sandwich" structure: (a) An integrated SCPC based on PVDF nano-film[9]; (b) flexible SCPC based on PVDF-graphene nanosheets[66]; (c) CuO / PVDF nanocomposite film based novel SCPC[67]; (d) SCPC based on PVDF-PZT nanocomposite film[68]; (e) mesoporous PVDF nano-film can be used as piezoelectric separator of SCPC[69]; (f) all-solid-state flexible SCPC based on mesoporous PVDF-LiPF6 film[70].
    Microscopic electrochemical process of porous PVDF nano-film based SCPC[69]: (a) In the initial stage, the lithium ion concentration in the electrolyte is in dynamic equilibrium; (b) when the external force F is applied to SCPC, the piezoelectric material deforms and a potential difference is generated inside the SCPC; (c) the piezoelectric electric field drives Li+ and electrons to conduct between the electrodes, promoting the electrode to undergo REDOX reaction; (d) the interior of SCPC gradually reaches dynamic equilibrium again; (e) when the external forceF is released, Li+ and electrons conduct in reverse; (f) the interior of SCPC tends to be stable and eventually reaches a dynamic equilibrium state.
    Fig. 8. Microscopic electrochemical process of porous PVDF nano-film based SCPC[69]: (a) In the initial stage, the lithium ion concentration in the electrolyte is in dynamic equilibrium; (b) when the external force F is applied to SCPC, the piezoelectric material deforms and a potential difference is generated inside the SCPC; (c) the piezoelectric electric field drives Li+ and electrons to conduct between the electrodes, promoting the electrode to undergo REDOX reaction; (d) the interior of SCPC gradually reaches dynamic equilibrium again; (e) when the external forceF is released, Li+ and electrons conduct in reverse; (f) the interior of SCPC tends to be stable and eventually reaches a dynamic equilibrium state.
    组分材料选择性灵敏度响应特性工作条件检测极限检测范围
    Au/SnO2厚膜 (非自驱动)[17]CO电阻比30.2 (4000 ppm, 210 ℃)响应时间8 s, 复原时间6 s (500 ppm, 210 ℃)83—210 ℃N/A100—4000 ppm
    SnO2-CuO多层结构 (非自驱动)[18]H2S 电阻比2.7 × 104 (20 ppm) 响应时间2 s140 ℃N/A2—20 ppm
    p型CuO颗粒/n型SnO2纳米线异质结构 (非自驱动)[19]H2S 电导比3250 (2 ppm)响应时间2 min, 复原时间10 min 250 ℃N/A1—10 ppm
    氧化铜功能化SnO2-ZnO核壳纳米线 (非自驱动)[20]H2S 约75% (12.5 ppm, 5 V, 50 ℃)N/A室温 (材料的自热效应提供能量)N/AN/A
    单壁碳纳米管 (非自驱动)[21]H2S 71.91% (40 mV)1.53—0.89 μA能量窗口介于 $ \pm $0.02 eV N/AN/A
    ZnO纳米线[22]O2; H2S; 水蒸气 35.7%; 28.6%; 127.3%0.7; 0.198; 0.35 V 压电输出 室温100 ppm (H2S) 100—1000 ppm (H2S)
    NiO/ZnO异质结 纳米线阵列[23]H2S 536% (1000 ppm)0.388 V (0 ppm)—0.061 V (1000 ppm)室温10—30 ppm0—1000 ppm
    ZnSnO3/ZnO 纳米线[24]液化石油气498.9% (8000 ppm)0.533 V (0 ppm)—0.089 V (8000 ppm)室温600 ppm1000—8000 ppm
    SnO2/ZnO纳米阵列[25]H2471.4% (800 ppm)0.80 V (0 ppm)— 0.14 V (800 ppm) 室温, 可由手指 弯曲驱动 10 ppm0—800 ppm
    CuO/ZnO PN结 纳米阵列[26]H2S 约629.8% (800 ppm)0.738 V (0 ppm)— 0.101 V (800 ppm); 响应时间250 s (200 ppm) 室温N/A0—800 ppm
    CdS纳米棒阵列[27]H2S 166.7% (600 ppm)0.32 V (0 ppm)— 0.12 V (600 ppm) 室温, 可由手指 按压驱动 N/A0—600 ppm
    PANI/PTFE/PANI三明治纳米结构[28]乙醇66.8% (210 ppm)响应时间 < 20 s, 复原时间 < 25 s 室温30 ppm0—210 ppm
    Table 1.

    Comparison of different flexible PENGs-based self-driven gas sensors and MOS-based non-self-driven gas sensors (1 ppm = 1 mg/L).

    柔性PENG-自驱动气体传感器与非自驱动MOS气体传感器的性能比较 (1 ppm = 1 mg/L)

    组分名称主要功能材料举例
    外壳基板保护支撑, 避免泄露, 封装缓冲 聚酰亚胺板/PI[11,23,25,41,43,44,50,66,70,73-79]; 塑料基板[80]; PDMS基板[11,29,37,40,78,81-87]; 玻璃基板[33,50,88,89]; PET基板[29,48,61,71,72,84,90-95]; 萘二甲酸乙二酯/PEN[96,97]; 聚氯乙烯/PVC[98,99]; 尼龙织物[100]
    Table 2. Summary of flexible substrate materials in SCPC.
    组分名称主要功能材料举例
    电池电极为电极的氧化还原反应提供反应场所和反应物质Cu[32,66,70,71,73,78,80,92,98,99,101]; Al[11,23,25,33,41,66,70,73,79,85,95,97,102-105]; LiCoO2[66,70]; 石墨[57,58,70,81,86]; 石墨烯[66]; ITO[48,61,72,90,95,96,106]; Au[29,40,43,44,50,74-76,82-84,87,96,97,103,107-109]; Cr[40,74,75,107]; Ag[49,54,94,100,107,110]; 碳纳米管[44,82,91]; Ti[11,23,25,55]; Ni[33,93]; MnO2[111]
    Table 3. Summary of flexible electrode materials in SCPC.
    组分名称主要功能材料举例
    压电 分离层 压电效应; 为离子传导提供动力等ZnO纳米线/棒[11,40,55,80,97,100,109]; (介孔) PVDF纳米薄膜[8,37,66,70,73,79,87,110]; PVDF-ZnO复合薄膜[50,74,75,81,103,111]; P(VDF-TrFE)复合薄膜[43,44,61,76,78,82,83,86,89,91,92,94-96,107,108]; PVDF-BaTiO3复合薄膜[10,44,90]; PVDF-BiVO4复合薄膜[88]; PVDF-KNN复合薄膜[102,104]; PVDF-rGO-Ag复合薄膜[85]; PVDF-ZrO2复合薄膜[98]; PVDF-NiO-SiO2复合薄膜[57]; ZnPc纳米棒[105]; 单层MoS2薄片[29]
    Table 4. Summary of flexible piezoelectric materials in SCPC.
    组分材料电解质类型峰值输出电压/电流能量存储容量/μA·h稳定性主要特性
    PVDF薄膜/ LiCoO2-TiO2电极/ Al-Ti基板[9]液态LiPF6327—395 mV (2.3 Hz, 45 N) 约0.036约8000周期PVDF-SCPC的雏形
    PVDF纳米薄膜/LiCoO2- 石墨烯电极/ Al-Cu箔- 聚酰亚胺基板[66]液态LiPF6500—850 mV (1.0 Hz, 34 N, 弯曲角度 ${10^ \circ }$) 约0.266约450 min石墨烯电极和聚酰 亚胺基板被首次应 用于柔性SCPC
    介孔PVDF薄膜/ LiCoO2- 石墨电极/ Al-Cu基板[70]固态LiPF625—473 mV (1.0 Hz, 30 N) 约0.118约160 min全固态可 弯折SCPC
    PVDF-PZT纳米复合薄 膜/LiCoO2-多壁碳纳米管电极/Al-Cu基板[68]液态LiPF6210—297.6 mV (1.5 Hz, 10 N) 约0.010N/APZT具有较高 的压电势系数 (500—600 pC/N)
    定向P(VDF-TrFE) 纳米纤维/平行Cu电极/PI基板[78]N/A12 V, 150 nA (1.6 Hz, 2 kPa) N/AN/Aβ晶相含量
    PVDF-ZnO纳米复合薄膜/Al-Au电极/PTFE基板[103]N/A约600 mV (6.0 Hz, 21 N) N/AN/AZnO和PVDF材料的极 化方向相同, 杂化结构 具有协同的压电特性
    Table 5. Examples of component materials and output properties of flexible SCPC.
    Mao-Liang Shen, Yan Zhang. Flexible sensor and energy storage device based on piezoelectric nanogenerator[J]. Acta Physica Sinica, 2020, 69(17): 170701-1
    Download Citation