[1] GS Litynski. Endoscopic surgery: the history, the pioneers. World J Surg, 23, 745-753(1999).
[2] SA Vasquez-Lopez, R Turcotte, V Koren et al. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light Sci Appl, 7, 110(2018).
[3] MR Gaab. Instrumentation: endoscopes and equipment. World Neurosurg, 79, S14.e11-S14.e21(2013).
[4] HH Liu, DJJ Hu, QZ Sun et al. Specialty optical fibers for advanced sensing applications. Opto-Electron Sci, 2, 220025(2023).
[5] BQ Jiang, YG Hou, JX Wu et al. In-fiber photoelectric device based on graphene-coated tilted fiber grating. Opto-Electron Sci, 2, 230012(2023).
[6] HH Hopkins, NS Kapany. A flexible fibrescope, using static scanning. Nature, 173, 39-41(1954).
[7] HH Hopkins, NS Kapany. Transparent fibres for the transmission of optical images. Opt Acta Int J Opt, 1, 164-170(1955).
[8] KC Kao, GA Hockham. Dielectric-fibre surface waveguides for optical frequencies. Proc Inst Electr Eng, 113, 1151-1158(1966).
[9] JW Sun, JC Wu, S Wu et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light Sci Appl, 11, 204(2022).
[10] A Orth, M Ploschner, E Wilson et al. Optical fiber bundles: ultra-slim light field imaging probes. Sci Adv, 5, eaav1555(2019).
[11] YT Pan, HK Xie, GK Fedder. Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt Lett, 26, 1966-1968(2001).
[12] QYJ Smithwick, EJ Seibel, PG Reinhall et al. Control aspects of the single-fiber scanning endoscope. Proc SPIE, 4253, 176-188(2001).
[13] XM Liu, MJ Cobb, YC Chen et al. Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt Lett, 29, 1763-1765(2004).
[14] M Kaur, PM Lane, C Menon. Scanning and actuation techniques for cantilever-based fiber optic endoscopic scanners—a review. Sensors, 21, 251(2021).
[15] JQ Kang, R Zhu, YX Sun et al. Pencil-beam scanning catheter for intracoronary optical coherence tomography. Opto-Electron Adv 5, 5, 200050(2022).
[16] BI Hirschowitz, LE Curtiss, CW Peters et al. Demonstration of a new gastroscope, the “fiberscope”. Gastroenterology, 35, 50-53(1958).
[17] XQ Yan, M Li, ZQ Chen et al. Schlemm’s canal and trabecular meshwork in eyes with primary open angle glaucoma: a comparative study using high-frequency ultrasound biomicroscopy. PLoS One, 11, e0145824(2016).
[18] M Kaur, PM Lane, C Menon. Design of scanning fiber micro-cantilever based catheter for ultra-small endoscopes, 717-723(2023).
[19] XP Chen, KL Reichenbach, C Xu. Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging. Opt Express, 16, 21598-21607(2008).
[20] HE Parker, A Perperidis, JM Stone et al. Core crosstalk in ordered imaging fiber bundles. Opt Lett, 45, 6490-6493(2020).
[21] M Kyrish, R Kester, R Richards-Kortum et al. Improving spatial resolution of a fiber bundle optical biopsy system. Proc SPIE, 7558, 755807(2010).
[22] IN Papadopoulos, S Farahi, C Moser et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt Express, 20, 10583-10590(2012).
[23] T Čižmár, K Dholakia. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt Express, 19, 18871-18884(2011).
[24] AM Caravaca-Aguirre, E Niv, DB Conkey et al. Real-time resilient focusing through a bending multimode fiber. Opt Express, 21, 12881-12887(2013).
[25] T Čižmár, K Dholakia. Exploiting multimode waveguides for pure fibre-based imaging. Nat Commun, 3, 1027(2012).
[26] R Di Leonardo, S Bianchi. Hologram transmission through multi-mode optical fibers. Opt Express, 19, 247-254(2011).
[27] TR Zhao, S Ourselin, T Vercauteren et al. Seeing through multimode fibers with real-valued intensity transmission matrices. Opt Express, 28, 20978-20991(2020).
[28] E Abraham, JX Zhou, ZW Liu. Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field. Opto-Electron Adv, 6, 220163(2023).
[29] Y Choi, C Yoon, M Kim et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys Rev Lett, 109, 203901(2012).
[30] YF Liu, PP Yu, YJ Wu et al. Single-shot wide-field imaging in reflection by using a single multimode fiber. Appl Phys Lett, 122, 063701(2023).
[31] S Popoff, G Lerosey, M Fink et al. Image transmission through an opaque material. Nat Commun, 1, 81(2010).
[32] K Abrashitova, LV Amitonova. High-speed label-free multimode-fiber-based compressive imaging beyond the diffraction limit. Opt Express, 30, 10456-10469(2022).
[33] SH Li, C Saunders, DJ Lum et al. Compressively sampling the optical transmission matrix of a multimode fibre. Light Sci Appl, 10, 88(2021).
[34] LV Amitonova, JF de Boer. Compressive imaging through a multimode fiber. Opt Lett, 43, 5427-5430(2018).
[35] RZ Zhu, HG Feng, F Xu. Deep learning-based multimode fiber imaging in multispectral and multipolarimetric channels. Opt Lasers Eng, 161, 107386(2023).
[36] RZ Zhu, JX Luo, XX Zhou et al. Anti-perturbation multimode fiber imaging based on the active measurement of the fiber configuration. ACS Photonics, 10, 3476-3483(2023).
[37] RC Xu, LH Zhang, ZY Chen et al. High accuracy transmission and recognition of complex images through multimode fibers using deep learning. Laser Photonics Rev, 17, 2200339(2023).
[38] LL Wang, YS Yang, ZT Liu et al. High‐speed all‐fiber micro‐imaging with large depth of field. Laser Photonics Rev, 16, 2100724(2022).
[39] BEA Saleh, MC Teich. Fundamentals of Photonics(1991).
[40] W Xiong, CW Hsu, Y Bromberg et al. Complete polarization control in multimode fibers with polarization and mode coupling. Light Sci Appl, 7, 54(2018).
[41] SM Popoff, G Lerosey, R Carminati et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys Rev Lett, 104, 100601(2010).
[42] S Turtaev, IT Leite, T Altwegg-Boussac et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci Appl, 7, 92(2018).
[43] SA Goorden, J Bertolotti, AP Mosk. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt Express, 22, 17999-18009(2014).
[44] A Dubois, L Vabre, AC Boccara et al. High-resolution full-field optical coherence tomography with a Linnik microscope. Appl Opt, 41, 805-812(2002).
[45] S Bianchi, R Di Leonardo. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip, 12, 635-639(2012).
[46] DB Conkey, AM Caravaca-Aguirre, R Piestun. High-speed scattering medium characterization with application to focusing light through turbid media. Opt Express, 20, 1733-1740(2012).
[47] A Ivanina, B Lochocki, LV Amitonova. Measuring the transmission matrix of a multimode fiber: on-axis vs off-axis holography. Proc SPIE, 12574, 125740T(2023).
[48] P Jákl, M Šiler, J Ježek et al. Endoscopic imaging using a multimode optical fibre calibrated with multiple internal references. Photonics, 9, 37(2022).
[49] P Jákl, M Šiler, J Ježek et al. Multimode fiber transmission matrix obtained with internal references. Proc SPIE, 10886, 1088610(2019).
[50] L Collard, L Piscopo, F Pisano et al. Optimizing the internal phase reference to shape the output of a multimode optical fiber. PLoS One, 18, e0290300(2023).
[51] LV Amitonova, AP Mosk, PWH Pinkse. Rotational memory effect of a multimode fiber. Opt Express, 23, 20569-20575(2015).
[52] SH Li, SAR Horsley, T Tyc et al. Memory effect assisted imaging through multimode optical fibres. Nat Commun, 12, 3751(2021).
[53] A Drémeau, A Liutkus, D Martina et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt Express, 23, 11898-11911(2015).
[54] M N’Gom, TB Norris, E Michielssen et al. Mode control in a multimode fiber through acquiring its transmission matrix from a reference-less optical system. Opt Lett, 43, 419-422(2018).
[55] L Deng, JD Yan, DS Elson et al. Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system. Opt Express, 26, 18436-18447(2018).
[56] P Caramazza, O Moran, R Murray-Smith et al. Transmission of natural scene images through a multimode fibre. Nat Commun, 10, 2029(2019).
[57] GQ Huang, DX Wu, JW Luo et al. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Opt Express, 28, 9487-9500(2020).
[58] XD Tao, D Bodington, M Reinig et al. High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing. Opt Express, 23, 14168-14187(2015).
[59] TR Zhao, L Deng, W Wang et al. Bayes’ theorem-based binary algorithm for fast reference-less calibration of a multimode fiber. Opt Express, 26, 20368-20378(2018).
[60] TR Zhao, S Ourselin, T Vercauteren et al. Focusing light through multimode fibres using a digital micromirror device: a comparison study of non-holographic approaches. Opt Express, 29, 14269-14281(2021).
[61] M Plöschner, T Tyc, T Čižmár. Seeing through chaos in multimode fibres. Nat Photonics, 9, 529-535(2015).
[62] B Fischer, S Sternklar. Image transmission and interferometry with multimode fibers using self‐pumped phase conjugation. Appl Phys Lett, 46, 113-114(1985).
[63] I McMichael, P Yeh, P Beckwith. Correction of polarization and modal scrambling in multimode fibers by phase conjugation. Opt Lett, 12, 507-509(1987).
[64] JY Son, VI Bobrinev, HW Jeon et al. Direct image transmission through a multimode optical fiber. Appl Opt, 35, 273-277(1996).
[65] GJ Dunning, RC Lind. Demonstration of image transmission through fibers by optical phase conjugation. Opt Lett, 7, 558-560(1982).
[66] T Ogasawara, M Ohno, K Karaki et al. Image transmission with a pair of graded-index optical fibers and a BaTiO3 phase-conjugate mirror. J Opt Soc Am B, 13, 2193-2197(1996).
[67] IN Papadopoulos, S Farahi, C Moser et al. Focused light delivery and all optical scanning from a multimode optical fiber using digital phase conjugation. Proc SPIE, 8576, 857603(2013).
[68] JW Zhang, CJ Ma, SQ Dai et al. Transmission and total internal reflection integrated digital holographic microscopy. Opt Lett, 41, 3844-3847(2016).
[69] CJ Ma, JL Di, Y Li et al. Rotational scanning and multiple-spot focusing through a multimode fiber based on digital optical phase conjugation. Appl Phys Express, 11, 062501(2018).
[70] IN Papadopoulos, S Farahi, C Moser et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed Opt Express, 4, 260-270(2013).
[71] CK Mididoddi, RA Lennon, SH Li et al. High-fidelity off-axis digital optical phase conjugation with transmission matrix assisted calibration. Opt Express, 28, 34692-34705(2020).
[72] M Jang, HW Ruan, HJ Zhou et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation. Opt Express, 22, 14054-14071(2014).
[73] RN Mahalati, D Askarov, JP Wilde et al. Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling. Opt Express, 20, 14321-14337(2012).
[74] HC Zhao, HT Ma, P Zhou et al. Multimode fiber laser beam cleanup based on stochastic parallel gradient descent algorithm. Opt Commun, 284, 613-615(2011).
[75] H Yu, ZY Yao, XB Sui et al. Focusing through disturbed multimode optical fiber based on self-adaptive genetic algorithm. Optik, 261, 169129(2022).
[76] SF Cheng, TT Zhong, CM Woo et al. Long-distance pattern projection through an unfixed multimode fiber with natural evolution strategy-based wavefront shaping. Opt Express, 30, 32565-32576(2022).
[77] BQ Li, B Zhang, Q Feng et al. Shaping the wavefront of incident light with a strong robustness particle swarm optimization algorithm. Chin Phys Lett, 35, 124201(2018).
[78] DB Conkey, AN Brown, AM Caravaca-Aguirre et al. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt Express, 20, 4840-4849(2012).
[79] ZG Yang, LJ Fang, XC Zhang et al. Controlling a scattered field output of light passing through turbid medium using an improved ant colony optimization algorithm. Opt Lasers Eng, 144, 106646(2021).
[80] Z Fayyaz, N Mohammadian, M Reza Rahimi Tabar et al. A comparative study of optimization algorithms for wavefront shaping. J Innov Opt Health Sci, 12, 1942002(2019).
[81] Z Yin, GD Liu, FD Chen et al. Fast-forming focused spots through a multimode fiber based on an adaptive parallel coordinate algorithm. Chin Opt Lett, 13, 071404(2015).
[82] H Chen, Y Geng, CF Xu et al. Efficient light focusing through an MMF based on two-step phase shifting and parallel phase compensating. Appl Opt, 58, 7552-7557(2019).
[83] ZK Zhang, DP Kong, Y Geng et al. Lensless multimode fiber imaging based on wavefront shaping. Appl Phys Express, 14, 092002(2021).
[84] AD Gomes, S Turtaev, Y Du et al. Near perfect focusing through multimode fibres. Opt Express, 30, 10645-10663(2022).
[85] Y Choi, C Yoon, M Kim et al. Disorder-mediated enhancement of fiber numerical aperture. Opt Lett, 38, 2253-2255(2013).
[86] IN Papadopoulos, S Farahi, C Moser et al. Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media. Opt Lett, 38, 2776-2778(2013).
[87] H Jang, C Yoon, E Chung et al. Holistic random encoding for imaging through multimode fibers. Opt Express, 23, 6705-6721(2015).
[88] S Bianchi, VP Rajamanickam, L Ferrara et al. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Opt Lett, 38, 4935-4938(2013).
[89] LV Amitonova, A Descloux, J Petschulat et al. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging. Opt Lett, 41, 497-500(2016).
[90] IT Leite, S Turtaev, X Jiang et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat Photonics, 12, 33-39(2018).
[91] D Stellinga, DB Phillips, SP Mekhail et al. Time-of-flight 3D imaging through multimode optical fibers. Science, 374, 1395-1399(2021).
[92] IT Leite, S Turtaev, DE Boonzajer Flaes et al. Observing distant objects with a multimode fiber-based holographic endoscope. APL Photonics, 6, 036112(2021).
[93] ZP Lyu, G Osnabrugge, PWH Pinkse et al. Focus quality in raster-scan imaging via a multimode fiber. Appl Opt, 61, 4363-4369(2022).
[94] A Descloux, LV Amitonova, PWH Pinkse. Aberrations of the point spread function of a multimode fiber due to partial mode excitation. Opt Express, 24, 18501-18512(2016).
[95] MC Velsink, ZY Lyu, PWH Pinkse et al. Comparison of round-and square-core fibers for sensing, imaging, and spectroscopy. Opt Express, 29, 6523-6531(2021).
[96] R Turcotte, E Sutu, CC Schmidt et al. Deconvolution for multimode fiber imaging: modeling of spatially variant PSF. Biomed Opt Express, 11, 4759-4771(2020).
[97] R Turcotte, CC Schmidt, NJ Emptage et al. Focusing light in biological tissue through a multimode optical fiber: refractive index matching. Opt Lett, 44, 2386-2389(2019).
[98] GPJ Laporte, N Stasio, C Moser et al. Enhanced resolution in a multimode fiber imaging system. Opt Express, 23, 27484-27493(2015).
[99] D Loterie, S Farahi, I Papadopoulos et al. Digital confocal microscopy through a multimode fiber. Opt Express, 23, 23845-23858(2015).
[100] RH Webb. Confocal optical microscopy. Rep Prog Phys, 59, 427-471(1996).
[101] T Tučková, M Šiler, DEB Flaes et al. Computational image enhancement of multimode fibre-based holographic endo-microscopy: harnessing the muddy modes. Opt Express, 29, 38206-38220(2021).
[102] S Turtaev, IT Leite, KJ Mitchell et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt Express, 25, 29874-29884(2017).
[103] XH Zhang, Z Wen, YG Ma et al. High contrast multimode fiber imaging based on wavelength modulation. Appl Opt, 59, 6677-6681(2020).
[104] M Plöschner, B Straka, K Dholakia et al. GPU accelerated toolbox for real-time beam-shaping in multimode fibres. Opt Express, 22, 2933-2947(2014).
[105] M Plöschner, T Čižmár. Compact multimode fiber beam-shaping system based on GPU accelerated digital holography. Opt Lett, 40, 197-200(2015).
[106] WH Lee. Binary computer-generated holograms. Appl Opt, 18, 3661-3669(1979).
[107] D Stellinga, DB Phillip, S Mekhail et al. 3D imaging through a single optical fiber. Proc SPIE, 12016, 120160M(2022).
[108] S Turtaev, IT Leite, KJ Mitchell et al. Exploiting digital micromirror device for holographic micro-endoscopy. Proc SPIE, 10932, 1093203(2019).
[109] S Turtaev, IT Leite, T Cizmar. Liquid-crystal and MEMS modulators for beam-shaping through multimode fibre, 207-208(2018).
[110] AM Caravaca-Aguirre, R Piestun. Single multimode fiber endoscope. Opt Express, 25, 1656-1665(2017).
[111] LV Amitonova, JF de Boer. Endo-microscopy beyond the Abbe and Nyquist limits. Light Sci Appl, 9, 81(2020).
[112] RZ Zhu, HG Feng, YF Xiong et al. All-fiber reflective single-pixel imaging with long working distance. Opt Laser Technol, 158, 108909(2023).
[113] YC Wu, Y Rivenson, HD Wang et al. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat Methods, 16, 1323-1331(2019).
[114] Z Wen, ZY Dong, QL Deng et al. Single multimode fibre for in vivo light-field-encoded endoscopic imaging. Nat Photonics, 17, 679-687(2023).
[115] R Olshansky. Mode coupling effects in graded-index optical fibers. Appl Opt, 14, 935-945(1975).
[116] DEB Flaes, J Stopka, S Turtaev et al. Robustness of light-transport processes to bending deformations in graded-index multimode waveguides. Phys Rev Lett, 120, 233901(2018).
[117] D Loterie, D Psaltis, C Moser. Bend translation in multimode fiber imaging. Opt Express, 25, 6263-6273(2017).
[118] S Farahi, D Ziegler, IN Papadopoulos et al. Dynamic bending compensation while focusing through a multimode fiber. Opt Express, 21, 22504-22514(2013).
[119] RY Gu, RN Mahalati, JM Kahn. Design of flexible multi-mode fiber endoscope. Opt Express, 23, 26905-26918(2015).
[120] GSD Gordon, M Gataric, AGCP Ramos et al. Characterizing optical fiber transmission matrices using metasurface reflector stacks for lensless imaging without distal access. Phys Rev X, 9, 041050(2019).
[121] HS Chen, NK Fontaine, R Ryf et al. Remote spatio-temporal focusing over multimode fiber enabled by single-ended channel estimation. IEEE J Sel Top Quantum Electron, 26, 7701809(2020).
[122] Z Wen, LQ Wang, XH Zhang et al. Fast volumetric fluorescence imaging with multimode fibers. Opt Lett, 45, 4931-4934(2020).
[123] CC Schmidt, R Turcotte, MJ Booth et al. Repeated imaging through a multimode optical fiber using adaptive optics. Biomed Opt Express, 13, 662-675(2022).
[124] B Rudolf, Y Du, S Turtaev et al. Thermal stability of wavefront shaping using a DMD as a spatial light modulator. Opt Express, 29, 41808-41818(2021).
[125] Y Zhou, MH Hong. Realization of noncontact confocal optical microsphere imaging microscope. Microsc Res Tech, 84, 2381-2387(2021).
[126] XL Yang, MH Hong. Enhancement of axial resolution and image contrast of a confocal microscope by a microsphere working in noncontact mode. Appl Opt, 60, 5271-5277(2021).
[127] D Loterie, SA Goorden, D Psaltis et al. Confocal microscopy through a multimode fiber using optical correlation. Opt Lett, 40, 5754-5757(2015).
[128] S Singh, S Labouesse, R Piestun. Multiview virtual confocal microscopy through a multimode fiber, 584-587(2021).
[129] S Singh, S Labouesse, R Piestun. Multiview scattering scanning imaging confocal microscopy through a multimode fiber. IEEE Trans Comput Imaging, 9, 159-171(2023).
[130] D Loterie, D Psaltis, C Moser. Confocal microscopy via multimode fibers: fluorescence bandwidth. Proc SPIE, 9717, 97171C(2016).
[131] PTC So, CY Dong, BR Masters et al. Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng, 2, 399-429(2000).
[132] H Cao, T Čižmár, S Turtaev et al. Controlling light propagation in multimode fibers for imaging, spectroscopy, and beyond. Adv Opt Photonics, 15, 524-612(2023).
[133] W Xiong, P Ambichl, Y Bromberg et al. Spatiotemporal control of light transmission through a multimode fiber with strong mode coupling. Phys Rev Lett, 117, 053901(2016).
[134] W Xiong, CW Hsu, H Cao. Long-range spatio-temporal correlations in multimode fibers for pulse delivery. Nat Commun, 10, 2973(2019).
[135] EE Morales-Delgado, S Farahi, IN Papadopoulos et al. Delivery of focused short pulses through a multimode fiber. Opt Express, 23, 9109-9120(2015).
[136] EE Morales-Delgado, D Psaltis, C Moser. Two-photon imaging through a multimode fiber. Opt Express, 23, 32158-32170(2015).
[137] T Pikálek, J Trägårdh, S Simpson et al. Wavelength dependent characterization of a multimode fibre endoscope. Opt Express, 27, 28239-28253(2019).
[138] J Trägårdh, T Pikálek, S Simpson et al. Towards focusing broad band light through a multimode fiber endoscope. Proc SPIE, 10886, 108860J(2019).
[139] R Turcotte, CC Schmidt, MJ Booth et al. Volumetric two-photon fluorescence imaging of live neurons using a multimode optical fiber. Opt Lett, 45, 6599-6602(2020).
[140] S Sivankutty, ER Andresen, R Cossart et al. Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber. Opt Express, 24, 825-841(2016).
[141] MC Velsink, LV Amitonova, PWH Pinkse. Spatiotemporal focusing through a multimode fiber via time-domain wavefront shaping. Opt Express, 29, 272-290(2021).
[142] I Gusachenko, MZ Chen, K Dholakia. Raman imaging through a single multimode fibre. Opt Express, 25, 13782-13798(2017).
[143] I Gusachenko, J Nylk, JA Tello et al. Multimode fibre based imaging for optically cleared samples. Biomed Opt Express, 8, 5179-5190(2017).
[144] SN Deng, D Loterie, G Konstantinou et al. Raman imaging through multimode sapphire fiber. Opt Express, 27, 1090-1098(2019).
[145] C Zhang, JA Aldana-Mendoza. Coherent Raman scattering microscopy for chemical imaging of biological systems. J Phys Photonics, 3, 032002(2021).
[146] J Trägårdh, T Pikálek, M Šerý et al. Label-free CARS microscopy through a multimode fiber endoscope. Opt Express, 27, 30055-30066(2019).
[147] T Pikálek, M Stibůrek, S Simpson et al. Suppression of the non-linear background in a multimode fibre CARS endoscope. Biomed Opt Express, 13, 862-874(2022).
[148] A Cifuentes, T Pikálek, P Ondráčková et al. Polarization-resolved second-harmonic generation imaging through a multimode fiber. Optica, 8, 1065-1074(2021).
[149] LY Yang, YP Li, F Fang et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv, 5, 200076(2022).
[150] S Mezil, AM Caravaca-Aguirre, EZ Zhang et al. Single-shot hybrid photoacoustic-fluorescent microendoscopy through a multimode fiber with wavefront shaping. Biomed Opt Express, 11, 5717-5727(2020).
[151] TR Zhao, MT Ma, S Ourselin et al. Video-rate dual-modal photoacoustic and fluorescence imaging through a multimode fibre towards forward-viewing endomicroscopy. Photoacoustics, 25, 100323(2022).
[152] TR Zhao, TT Pham, C Baker et al. Ultrathin, high-speed, all-optical photoacoustic endomicroscopy probe for guiding minimally invasive surgery. Biomed Opt Express, 13, 4414-4428(2022).
[153] TR Zhao, MJ Zhang, S Ourselin et al. Wavefront shaping-assisted forward-viewing photoacoustic endomicroscopy based on a transparent ultrasound sensor. Appl Sci, 12, 12619(2022).
[154] TR Zhao, MJ Shi, S Ourselin et al. Deep learning boosts the imaging speed of photoacoustic endomicroscopy. Proc SPIE, 12379, 123790J(2023).
[155] S Ohayon, A Caravaca-Aguirre, R Piestun et al. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed Opt Express, 9, 1492-1509(2018).
[156] E Kakkava, M Romito, DB Conkey et al. Selective femtosecond laser ablation via two-photon fluorescence imaging through a multimode fiber. Biomed Opt Express, 10, 423-433(2019).
[157] M Stibůrek, P Ondráčková, T Tučková et al. 110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics. Nat Commun, 14, 1897(2023).
[158] S Karbasi, RJ Frazier, KW Koch et al. Image transport through a disordered optical fibre mediated by transverse Anderson localization. Nat Commun, 5, 3362(2014).
[159] Y Rivenson, Z Göröcs, H Günaydin et al. Deep learning microscopy. Optica, 4, 1437-1443(2017).
[160] C Qiao, D Li, Y Liu et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat Biotechnol, 41, 367-377(2023).