• Photonics Research
  • Vol. 7, Issue 1, 14 (2019)
Yanjia Lü1, Chen Wei1、5、*, Han Zhang2, Zhe Kang3、6、*, Guanshi Qin4, and Yong Liu1
Author Affiliations
  • 1State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China
  • 3Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130012, China
  • 4State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
  • 5e-mail: cwei@uestc.edu.cn
  • 6e-mail: kangz@cho.ac.cn
  • show less
    DOI: 10.1364/PRJ.7.000014 Cite this Article Set citation alerts
    Yanjia Lü, Chen Wei, Han Zhang, Zhe Kang, Guanshi Qin, Yong Liu. Wideband tunable passively Q-switched fiber laser at 2.8  μm using a broadband carbon nanotube saturable absorber[J]. Photonics Research, 2019, 7(1): 14 Copy Citation Text show less
    References

    [1] P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, B. Janker. Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng., 37, 101-114(2002).

    [2] A. Godard. Infrared (2–12  μm) solid-state laser sources: a review. C. R. Phys., 8, 1100-1128(2007).

    [3] M. Pollaun, S. D. Jackson. Mid-Infrared Coherent Sources and Applications(2008).

    [4] K. Ke, C. Xia, M. N. Islam, M. J. Welsh, M. J. Freeman. Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser. Opt. Express, 17, 12627-12640(2009).

    [5] M. Vainio, M. Merimaa, L. Halonen. Frequency-comb-referenced molecular spectroscopy in the mid-infrared region. Opt. Lett., 36, 4122-4124(2011).

    [6] C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, Y. Liu. 34  nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser. Opt. Express, 25, 19170-19178(2017).

    [7] U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. A. der Au. Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron., 2, 435-453(1996).

    [8] D. Kopf, A. Prasad, G. Zhang, M. Moser, U. Keller. Broadly tunable femtosecond Cr:LiSAF laser. Opt. Lett., 22, 621-623(1997).

    [9] A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, M. P. Frolov. Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers. Quantum Electron., 36, 1-2(2006).

    [10] J. Li, H. Luo, L. Wang, B. Zhai, H. Li, Y. Liu. Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3  μm. Opt. Express, 23, 22362-22370(2015).

    [11] C. Wei, X. Zhu, R. A. Norwood, N. Peyghambarian. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8  μm. Opt. Lett., 37, 3849-3851(2012).

    [12] C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, Y. Liu. Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range. IEEE Photon. Technol. Lett., 29, 881-884(2017).

    [13] C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, N. Peyghambarian. Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser. Opt. Lett., 38, 3233-3236(2013).

    [14] G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Graphene mode-locked fiber laser at 2.8  μm. IEEE Photon. Technol. Lett., 28, 7-10(2015).

    [15] G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, N. Peyghambarian. Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3  μm. Opt. Mater. Express, 3, 1365-1377(2013).

    [16] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).

    [17] F. Bernard, H. Zhang, S. P. Gorza, P. Emplit. Towards mode-locked fiber laser using topological insulators. Nonlinear Photonics, NTh1A.5(2012).

    [18] Z. Q. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, H. Xu. 1.06  μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber. Opt. Express, 21, 29516-29522(2013).

    [19] Z. Yu, Y. Song, J. Tian, Z. Dou, H. Guoyu, K. Li, H. Li, X. Zhang. High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film. Opt. Express, 22, 11508-11515(2014).

    [20] M. Jung, J. Lee, J. Koo, J. Park, Y. Song, K. Lee, S. Lee, J. Lee. A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator. Opt. Express, 22, 7865-7874(2014).

    [21] J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, Y. Liu. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber. Opt. Lett., 40, 3659-3662(2015).

    [22] Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, L. Qian. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm. Opt. Express, 23, 24713-24718(2015).

    [23] Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, L. Qian. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber. Opt. Lett., 41, 56-59(2016).

    [24] C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, Y. Liu. Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber. Laser Phys. Lett., 13, 105108(2016).

    [25] R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, J. R. Taylor. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt. Express, 22, 31113-31122(2014).

    [26] Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, J. Weng. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber. Opt. Express, 22, 25258-25266(2014).

    [27] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842-845(2013).

    [28] F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, A. C. Ferrari. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 3, 738-742(2008).

    [29] Y. Meng, Y. Li, Y. Xu, F. Wang. Carbon nanotube mode-locked thulium fiber laser with 200  nm tuning range. Sci. Rep., 7, 45109(2017).

    [30] Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, S. K. Turitsyn. Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter. Opt. Express, 20, 17797-17805(2012).

    [31] M. Chernysheva, A. Rozhin, Y. Fedotov, C. Mou, R. Arif, S. M. Kobtsev, E. M. Dianov, S. K. Turitsyn. Carbon nanotubes for ultrafast fibre lasers. Nanophotonics, 6, 1-30(2017).

    [32] S. Reich, C. Thomsen, J. Maultzsch. Carbon Nanotubes: Basic Concepts and Physical Properties(2004).

    [33] D. Hudson, E. Magi, L. Gomes, S. D. Jackson. 1  W diode-pumped tunable Ho3+, Pr3+-doped fluoride glass fibre laser. Electron. Lett., 47, 985-986(2011).

    CLP Journals

    [1] Rui-Xue Bai, Jue-Han Yang, Da-Hai Wei, Zhong-Ming Wei. Research progress of low-dimensional semiconductor materials in field of nonlinear optics[J]. Acta Physica Sinica, 2020, 69(18): 184211-1

    Yanjia Lü, Chen Wei, Han Zhang, Zhe Kang, Guanshi Qin, Yong Liu. Wideband tunable passively Q-switched fiber laser at 2.8  μm using a broadband carbon nanotube saturable absorber[J]. Photonics Research, 2019, 7(1): 14
    Download Citation