[1] ZHANG X C, XU J Z. Introduction to THz wave photonics[M]. New Yk: Springer, 2010.
[2] STÖCKLE R M, SUH Y D, DECKERT V, et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy[J]. Chemical Physics Letters, 318, 131-136(2000).
[3] HARTSCHUH A, SÁNCHEZ E J, XIE X S, et al. High-resolution near-field Raman microscopy of single-walled carbon nanotubes[J]. Physical Review Letters, 90, 095503(2003).
[4] POZZI E A, SONNTAG M D, JIANG N, et al. Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale[J]. ACS Nano, 7, 885-888(2013).
[5] KNOLL B, KEILMANN F. Near-field probing of vibrational absorption for chemical microscopy[J]. Nature, 399, 134-137(1999).
[6] OCELIC N, HUBER A, HILLENBRAND R. Pseudoheterodyne detection for background-free near-field spectroscopy[J]. Applied Physics Letters, 89, 101124(2006).
[7] POLLARD B, MULLER E A, HINRICHS K, et al. Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics[J]. Nature Communications, 5, 3587(2014).
[8] NOZAKI J, MORI S, MIYATA Y, et al. Local optical absorption spectra of MoS2 monolayers obtained using scanning near-field optical microscopy measurements[J]. Japanese Journal of Applied Physics, 55, 038003(2016).
[9] HUANG F, TAMMA V A, MARDY Z, et al. Imaging nanoscale electromagnetic near-field distributions using optical forces[J]. Scientific Reports, 5, 10610(2015).
[10] JAHNG J, BROCIOUS J, FISHMAN D A, et al. Gradient and scattering forces in photoinduced force microscopy[J]. Physical Review B, 90, 155417(2014).
[11] NOWAK D, MORRISON W, WICKRAMASINGHE H K, et al. Nanoscale chemical imaging by photoinduced force microscopy[J]. Science Advances, 2, e1501571(2016).
[12] JAHNG J, LADANI F T, KHAN R M, et al. Visualizing surface Plasmon Polaritons by their gradient force[J]. Optics Letters, 40, 5058-5061(2015).
[13] TUMKUR T U, YANG X, CERJAN B, et al. Photoinduced force mapping of Plasmonic nanostructures[J]. Nano Letters, 16, 7942-7949(2016).
[14] JAHNG J, BROCIOUS J, FISHMAN D A, et al. Ultrafast pump-probe force microscopy with nanoscale resolution[J]. Applied Physics Letters, 106, 083113(2015).
[15] JAHNG J, POTMA E O, LEE E S. Tip-enhanced thermal expansion force for nanoscale chemical imaging and spectroscopy in photoinduced force microscopy[J]. Analytical Chemistry, 90, 11054-11061(2018).
[16] RAJAPAKSA I, WICKRAMASINGHE H K. Raman spectroscopy and microscopy based on mechanical force detection[J]. Applied Physics Letters, 99, 161103(2011).
[20] AMBROSIO A, DEVLIN R C, CAPASSO F. Observation of nanoscale refractive index contrast via photoinduced force microscopy[J]. ACS Photonics, 4, 846-851(2017).
[21] DHOLAKIA K, ZEMÁNEK P.
[22] ARIAS-GONZÁLEZ J R, NIETO-VESPERINAS M. Optical forces on small particles: attractive and repulsive nature and Plasmon-resonance conditions[J]. Journal of the Optical Society of America A, 20, 1201-1209(2003).
[23] JAHNG J, FISHMAN D A, PARK S, et al. Linear and nonlinear optical spectroscopy at the nanoscale with photoinduced force microscopy[J]. Accounts of Chemical Research, 48, 2671-2679(2015).
[24] NOVOTNY L, HECHT B. Principles of nanooptics[M]. Cambridge: Cambridge University Press, 2012.
[25] KNOLL B, KEILMANN F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy[J]. Optics Communications, 182, 321-328(2000).
[26] Gmelin hbook of inganic ganometallic chemistry[M]. 8th ed. Berlin: Springer, 1995.
[27] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010).
[28] HE K L, KUMAR N, ZHAO L, et al. Tightly bound excitons in monolayer WSe2[J]. Physical Review Letters, 113, 026803(2014).
[29] MAK K F, HE K L, LEE C, et al. Tightly bound trions in monolayer MoS2[J]. Nature Materials, 12, 207-211(2013).
[30] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 10, 216-226(2016).
[31] LEE P A. Physics chemistry of materials with layered structures: optical electrical properties[M]. Ddrecht, Holl: Reidel Publishing Company, 1976.
[32] COEHOORN R, HAAS C, DE GROOT R A. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps[J]. Physical Review B, 35, 6203-6206(1987).
[33] CVITKOVIC A, OCELIC N, HILLENBRAND R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy[J]. Optics Express, 15, 8550-8565(2007).
[35] CHEN X, YANG Z B, FENG S Z, et al. How universal is the wetting aging in 2D materials[J]. Nano Letters, 20, 5670-5677(2020).
[36] DE BARTOLOMEO A, GENOVESE L, FOLLER T, et al. Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors[J]. Nanotechnology, 28, 214002(2017).
[37] LANG D V, LOGAN R A. Large-lattice-relaxation model for persistent photoconductivity in compound semiconductors[J]. Physical Review Letters, 39, 635-639(1977).
[38] WU Y C, LIU C H, CHEN S Y, et al. Extrinsic origin of persistent photoconductivity in monolayer MoS2 field effect transistors[J]. Scientific Reports, 5, 11472(2015).
[39] GAO J, LI B C, TAN J W, et al. Aging of transition metal dichalcogenide monolayers[J]. ACS Nano, 10, 2628-2635(2016).
[40] PARK J H, VISHWANATH S, WOLF S, et al. Selective chemical response of transition metal dichalcogenides and metal dichalcogenides in ambient conditions[J]. ACS Applied Materials & Interfaces, 9, 29255-29264(2017).