• Advanced Photonics Nexus
  • Vol. 2, Issue 3, 036004 (2023)
Hanxiang Yang1、2, Jiawei Yan3, and Haixiao Deng4、*
Author Affiliations
  • 1Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China
  • 2University of Chinese Academy of Sciences, Beijing, China
  • 3European XFEL, Schenefeld, Germany
  • 4Chinese Academy of Sciences, Shanghai Advanced Research Institute, Shanghai, China
  • show less
    DOI: 10.1117/1.APN.2.3.036004 Cite this Article Set citation alerts
    Hanxiang Yang, Jiawei Yan, Haixiao Deng. High-repetition-rate seeded free-electron laser enhanced by self-modulation[J]. Advanced Photonics Nexus, 2023, 2(3): 036004 Copy Citation Text show less
    References

    [1] C. Pellegrini, A. Marinelli, S. Reiche. The physics of X-ray free-electron lasers. Rev. Mod. Phys., 88, 015006(2016).

    [2] N. Huang et al. Features and futures of X-ray free-electron lasers. Innovation, 2, 100097(2021).

    [3] L. Serafini et al. MariX, an advanced MHz-class repetition rate X-ray source for linear regime time-resolved spectroscopy and photon scattering. Nucl. Instrum. Methods Phys. Res., Sect. A, 930, 167-172(2019).

    [4] P. Emma et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics, 4, 641-647(2010).

    [5] T. Ishikawa et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics, 6, 540-544(2012).

    [6] H. S. Kang et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics, 11, 708-713(2017).

    [7] W. Decking et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics, 14, 391-397(2020).

    [8] E. Prat et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photonics, 14, 748-754(2020).

    [9] A. M. Kondratenko, E. L. Saldin. Generating of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel., 10, 207-216(1980).

    [10] R. Bonifacio et al. Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise. Phys. Rev. Lett., 73, 70-73(1994).

    [11] J. Feldhaus et al. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL. Opt. Commun., 140, 341-352(1997).

    [12] G. Geloni, V. Kocharyan, E. Saldin. A novel self-seeding scheme for hard X-ray FELs. J. Mod. Opt., 58, 1391-1403(2011).

    [13] L. H. Yu. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A, 44, 5178-5193(1991).

    [14] L. H. Yu, I. Ben-Zvi. High-gain harmonic generation of soft X-rays with the ‘fresh bunch’ technique. Nucl. Instrum. Methods Phys. Res., Sect. A, 393, 96-99(1997).

    [15] G. Stupakov. Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett., 102, 074801(2009).

    [16] D. Xiang, G. Stupakov. Echo-enabled harmonic generation free electron laser. Phys. Rev. Spec. Top.—Accel. Beams, 12, 030702(2009).

    [17] H. Deng, C. Feng. Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation. Phys. Rev. Lett., 111, 084801(2013).

    [18] L. H. Yu. High-gain harmonic-generation free-electron laser. Science, 289, 932-934(2000).

    [19] E. Allaria et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics, 6, 699-704(2012).

    [20] E. Allaria et al. Two-stage seeded soft-X-ray free-electron laser. Nat. Photonics, 7, 913-918(2013).

    [21] B. Liu et al. Demonstration of a widely-tunable and fully-coherent high-gain harmonic-generation free-electron laser. Phys. Rev. ST Accel. Beams, 16, 020704(2013).

    [22] Z. T. Zhao et al. First lasing of an echo-enabled harmonic generation free-electron laser. Nat. Photonics, 6, 360-363(2012).

    [23] E. Hemsing et al. Echo-enabled harmonics up to the 75th order from precisely tailored electron beams. Nat. Photonics, 10, 512-515(2016).

    [24] P. R. Ribič et al. Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser. Nat. Photonics, 13, 555-561(2019).

    [25] C. Feng et al. Coherent extreme ultraviolet free-electron laser with echo-enabled harmonic generation. Phys. Rev. Accel. Beams, 22, 50703(2019).

    [26] J. Stohr. Linac coherent light source II (LCLS-II) conceptual design report(2011).

    [27] Z. Zhao et al. SCLF: an 8-GeV CW SCRF Linac-based X-ray FEL facility in Shanghai, 182-184(2018).

    [28] N.-S. Huang et al. The MING proposal at shine: megahertz cavity enhanced X-ray generation. Nucl. Sci. Tech., 34, 6(2023).

    [29] W. Ackermann et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics, 2, 336-342(2007).

    [30] J. Yan et al. Self-amplification of coherent energy modulation in seeded free-electron lasers. Phys. Rev. Lett., 126, 084801(2021).

    [31] J. Yan et al. First observation of laser–beam interaction in a dipole magnet. Adv. Photonics, 3, 045003(2021).

    [32] G. Paraskaki et al. High repetition rate seeded free electron laser with an optical klystron in high-gain harmonic generation. Phys. Rev. Accel. Beams, 24, 120701(2021).

    [33] S. Zhao, W. Qin, S. Huang. Harmonic-enhanced high-gain harmonic generation for a high repetition rate free-electron laser. High Power Laser Sci. Eng., 10, e4(2022).

    [34] P. Gandhi et al. Oscillator seeding of a high gain harmonic generation free electron laser in a radiator-first configuration. Phys. Rev. ST Accel. Beams, 16, 020703(2013).

    [35] K. Li, H. Deng. Gain cascading scheme of a free-electron-laser oscillator. Phys. Rev. Accel. Beams, 20, 110703(2017).

    [36] N. S. Mirian et al. High-repetition rate and coherent free-electron laser in the tender x rays based on the echo-enabled harmonic generation of an ultraviolet oscillator pulse. Phys. Rev. Accel. Beams, 24, 050702(2021).

    [37] M. Opromolla et al. High repetition rate and coherent free-electron laser oscillator in the tender X-ray range tailored for linear spectroscopy. Appl. Sci., 11, 5892(2021).

    [38] S. Ackermann et al. Novel method for the generation of stable radiation from free-electron lasers at high repetition rates. Phys. Rev. Accel. Beams, 23, 71302(2020).

    [39] V. Petrillo et al. Coherent, high repetition rate tender X-ray free-electron laser seeded by an extreme ultra-violet free-electron laser oscillator. N. J. Phys., 22, 073058(2020).

    [40] G. Paraskaki et al. Optimization and stability of a high-gain harmonic generation seeded oscillator amplifier. Phys. Rev. Accel. Beams, 24, 34801(2021).

    [41] H. Sun et al. Seeding with a harmonic optical klystron resonator configuration in a high repetition rate free electron laser. Phys. Rev. Accel. Beams, 25, 060701(2022).

    [42] D. Dunning, N. Thompson, B. McNeil. Design study of an HHG-seeded harmonic cascade free-electron laser. J. Mod. Opt., 58, 1362-1373(2011).

    [43] X. Wang et al. High-repetition-rate seeded free-electron laser with direct-amplification of an external coherent laser. N. J. Phys., 24, 33013(2022).

    [44] Q. Jia. Analysis of modulation parameters for high repetition rate seeded FEL. Nucl. Instrum. Methods Phys. Res., Sect. A, 1015, 165767(2021).

    [45] L. H. Yu, J. Wu. Theory of high gain harmonic generation: an analytical estimate. Nucl. Instrum. Methods Phys. Res., Sect. A, 483, 493-498(2002).

    [46] Z. Huang, K. J. Kim. Review of X-ray free-electron laser theory. Phys. Rev. ST Accel. Beams, 10, 034801(2007).

    [47] Z. Huang et al. Suppression of microbunching instability in the linac coherent light source. Phys. Rev. ST Accel. Beams, 7, 73-82(2004).

    [48] S. Reiche. Genesis 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res., Sect. A, 429, 243-248(1999).

    [49] B. Liu et al. The SXFEL upgrade: from test facility to user facility. Appl. Sci., 12, 176(2022).

    [50] C. Feng et al. Coherent and ultrashort soft X-ray pulses from echo-enabled harmonic cascade free-electron lasers. Optica, 9, 785-791(2022).

    [51] E. Saldin, E. Schneidmiller, M. V. Yurkov. The Physics of Free Electron Lasers(1999).

    [52] A. Marinelli et al. HGHG schemes for short wavelengths. Nucl. Instrum. Methods Phys. Res., Sect. A, 593, 35-38(2008).

    [53] P. Finetti et al. Pulse duration of seeded free-electron lasers. Phys. Rev. X, 7, 021043(2017).

    [54] G. Wang et al. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers. Phys. Rev. ST Accel. Beams, 18, 060701(2015).

    [55] C. Feng et al. Measurement of the average local energy spread of electron beam via coherent harmonic generation. Phys. Rev. ST Accel. Beams, 14, 090701(2011).

    [56] E. Allaria, G. De Ninno. Soft-X-ray coherent radiation using a single-cascade free-electron laser. Phys. Rev. Lett., 99, 014801(2007).

    [57] B. Garcia et al. Method to generate a pulse train of few-cycle coherent radiation. Phys. Rev. Accel. Beams, 19, 090701(2016).

    [58] K. Zhou et al. Generating high-brightness and coherent soft X-ray pulses in the water window with a seeded free-electron laser. Phys. Rev. Accel. Beams, 20, 010702(2017).

    [59] G. Lambert et al. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nat. Phys., 4, 296-300(2008).

    [60] M. Labat et al. High-gain harmonic-generation free-electron laser seeded by harmonics generated in gas. Phys. Rev. Lett., 107, 224801(2011).

    [61] S. Ackermann et al. Generation of coherent 19- and 38-nm radiation at a free-electron laser directly seeded at 38 nm. Phys. Rev. Lett., 111, 114801(2013).

    Hanxiang Yang, Jiawei Yan, Haixiao Deng. High-repetition-rate seeded free-electron laser enhanced by self-modulation[J]. Advanced Photonics Nexus, 2023, 2(3): 036004
    Download Citation