[1] Morin F J. Oxides which show a metal-to-insulator transition at the neel temperature[J].Physical Review Letters,1959,3:34-36.
Morin F J. Oxides which show a metal-to-insulator transition at the neel temperature[J].Physical Review Letters,1959,3:34-36.
[2] Jerominek H, Picard F, Vincent D. Vanadium oxide films for optical switching and detection[J].Optical Engineering,1993, 32:2092-2099.
Jerominek H, Picard F, Vincent D. Vanadium oxide films for optical switching and detection[J].Optical Engineering,1993, 32:2092-2099.
[3] Gao Y F, Luo H J, Zhang Z T, et al. Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing[J].Nano Energy,2012,1:221-246.
Gao Y F, Luo H J, Zhang Z T, et al. Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing[J].Nano Energy,2012,1:221-246.
[4] Granqvist C G. Spectrally selective coatings for energy efficiency and solar applications[J].Physica Scripta,1985,32:401-407.
Granqvist C G. Spectrally selective coatings for energy efficiency and solar applications[J].Physica Scripta,1985,32:401-407.
[5] Li S Y, Niklasson G A, Granqvist C G. Thermochromic fenestration with VO2-based materials: three challenges and how they can bemet[J].Thin Solid Films,2012,520:3823-3828.
Li S Y, Niklasson G A, Granqvist C G. Thermochromic fenestration with VO2-based materials: three challenges and how they can bemet[J].Thin Solid Films,2012,520:3823-3828.
[6] Kasnrga T S, Sun D, Park J H, et al. Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy[J]. Nature Nanotechnology,2012,7:723-727.
Kasnrga T S, Sun D, Park J H, et al. Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy[J]. Nature Nanotechnology,2012,7:723-727.
[7] Hu B, Ding Y, Chen W, et al. External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor[J].Advanced Materials,2010,22:5134-5139.
Hu B, Ding Y, Chen W, et al. External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor[J].Advanced Materials,2010,22:5134-5139.
[8] Li S Y, Niklasson G A, Granqvist C G. Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation[J].Journal of Applied Physics,108(6):063525/1- 063525/8.
Li S Y, Niklasson G A, Granqvist C G. Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation[J].Journal of Applied Physics,108(6):063525/1- 063525/8.
[9] Li S Y, Niklasson G A, Granqvist C G. Nanothermochromics with VO2-based core-shell structures: calculated luminous and solar optical properties[J].Journal of Applied Physics,2011,109(11):113515/1-113515/5.
Li S Y, Niklasson G A, Granqvist C G. Nanothermochromics with VO2-based core-shell structures: calculated luminous and solar optical properties[J].Journal of Applied Physics,2011,109(11):113515/1-113515/5.
[10] Shibuya K, Kawasaki M, Tokura Y. Metal-insulator transition in epitaxial V1-xWxO2 (0≤x≤0.33) thin films [J].Applied Physics Letters,2010,96:022102/1-022102/3.
Shibuya K, Kawasaki M, Tokura Y. Metal-insulator transition in epitaxial V1-xWxO2 (0≤x≤0.33) thin films [J].Applied Physics Letters,2010,96:022102/1-022102/3.
[11] Nakano M, Shibuya K, Okuyama D, et al.Collective bulk carrier delocalization driven by electrostatic surface charge accumulation[J]. Nature,2012,487:459-462.
Nakano M, Shibuya K, Okuyama D, et al.Collective bulk carrier delocalization driven by electrostatic surface charge accumulation[J]. Nature,2012,487:459-462.
[12] Muraoka Y, Hiroi Z. Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates [J].Applied Physics Letters, 2002,80:583-585.
Muraoka Y, Hiroi Z. Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates [J].Applied Physics Letters, 2002,80:583-585.
[13] Tsai K Y, Chin T S, Shieh H P D, et al. Effect of As-deposited residual stress on transition temperatures of VO2 thin films[J].Journal of Materials Research,2004,19:2306-2314.
Tsai K Y, Chin T S, Shieh H P D, et al. Effect of As-deposited residual stress on transition temperatures of VO2 thin films[J].Journal of Materials Research,2004,19:2306-2314.
[14] Manning T D, Parkin I P. Atmospheric pressure chemical vapour deposition of tungsten doped vanadium(IV) oxide from VOCl3, water and WCl6[J].Journal of Materials Chemistry, 2004,14:2554-2559.
Manning T D, Parkin I P. Atmospheric pressure chemical vapour deposition of tungsten doped vanadium(IV) oxide from VOCl3, water and WCl6[J].Journal of Materials Chemistry, 2004,14:2554-2559.
[15] Dietrich M K, Kuhl F, Polity A, et al. Optimizing thermochromic VO2 by Co-doping with W and Sr for smart window applications[J]. Applied Physics Letters,2017,110:141907/1-141907-5.
Dietrich M K, Kuhl F, Polity A, et al. Optimizing thermochromic VO2 by Co-doping with W and Sr for smart window applications[J]. Applied Physics Letters,2017,110:141907/1-141907-5.
[16] Khan G R, Asokan K, Ahmad B. Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition[J].Thin Solid Films,2017,625:155-162.
Khan G R, Asokan K, Ahmad B. Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition[J].Thin Solid Films,2017,625:155-162.
[17] Kiri P, Warwick M E A, Ridley I. Fluorine doped vanadium dioxide thin films for smart windows[J].Thin Solid Films,2011,520:1363-1366.
Kiri P, Warwick M E A, Ridley I. Fluorine doped vanadium dioxide thin films for smart windows[J].Thin Solid Films,2011,520:1363-1366.
[18] Zhou J D, Gao Y F, Liu X L, et al. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature[J].Physical Chemistry Chemical Physics,2013,15(20):7505-7511.
Zhou J D, Gao Y F, Liu X L, et al. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature[J].Physical Chemistry Chemical Physics,2013,15(20):7505-7511.
[19] Mlyuka N R, Niklasson G A, Granqvist C G. Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature[J].Applied Physics Letters,2009,95(17):171909/1-171909/3.
Mlyuka N R, Niklasson G A, Granqvist C G. Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature[J].Applied Physics Letters,2009,95(17):171909/1-171909/3.
[20] Chen S, Dai L, Liu J, et al. The Visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: an optimization and first principle study[J].Physical Chemistry Chemical Physics,2013,15(40):17537- 17543.
Chen S, Dai L, Liu J, et al. The Visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: an optimization and first principle study[J].Physical Chemistry Chemical Physics,2013,15(40):17537- 17543.
[21] Brown B L, Lee M, Clem P G, et al. Custer, electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films[J].Journal of Applied Physics,2013,113(17):173704.
Brown B L, Lee M, Clem P G, et al. Custer, electrical and optical characterization of the metal-insulator transition temperature in Cr-doped VO2 thin films[J].Journal of Applied Physics,2013,113(17):173704.
[22] Lu S W, Hou L S, Gan F X. Synthesis and phase transition of Cu2+ ion doped VO2 thin films[J].Journal of Materials Science Letters,1996, 15(10):856-857.
Lu S W, Hou L S, Gan F X. Synthesis and phase transition of Cu2+ ion doped VO2 thin films[J].Journal of Materials Science Letters,1996, 15(10):856-857.
[23] Du J, Gao Y F, Chen Z, et al. Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation[J]. Solar Energy Materials and Solar Cells,2013,110:1-7.
Du J, Gao Y F, Chen Z, et al. Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation[J]. Solar Energy Materials and Solar Cells,2013,110:1-7.
[24] Du J, Gao Y F, Luo H J, et al. Formation and metal-to-insulator transition properties of VO2-ZrV2O7 composite films by polymer-assisted deposition[J].Solar Energy Materials and Solar Cells,2011,95(7):1604-1609.
Du J, Gao Y F, Luo H J, et al. Formation and metal-to-insulator transition properties of VO2-ZrV2O7 composite films by polymer-assisted deposition[J].Solar Energy Materials and Solar Cells,2011,95(7):1604-1609.
[25] Piccirillo C, Binions R, Parkin I P. Nb-doped VO2 thin films prepared by aerosol-assisted chemical vapour deposition[J].European Journal of Inorganic Chemistry,2007(25):4050-4055.
Piccirillo C, Binions R, Parkin I P. Nb-doped VO2 thin films prepared by aerosol-assisted chemical vapour deposition[J].European Journal of Inorganic Chemistry,2007(25):4050-4055.
[26] Hanlon T J, Coath J A, Richardson M A. Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method[J].Thin Solid Films,2003,436(2):269-272.
Hanlon T J, Coath J A, Richardson M A. Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method[J].Thin Solid Films,2003,436(2):269-272.
[27] Mai Q, Hu B, Hu T, Chen W, et al. Electrical property of Mo-doped VO2 nanowire array film by melting- quenching sol-gel method[J]. Journal of Physical Chemistry B,2006,110(39):19083-19086.
Mai Q, Hu B, Hu T, Chen W, et al. Electrical property of Mo-doped VO2 nanowire array film by melting- quenching sol-gel method[J]. Journal of Physical Chemistry B,2006,110(39):19083-19086.
[28] Wu Z P, Miyashita A, Yamamoto S, et al. Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film[J].Journal of Applied Physics,1999,86(9):5311-5313.
Wu Z P, Miyashita A, Yamamoto S, et al. Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film[J].Journal of Applied Physics,1999,86(9):5311-5313.
[29] Gao Y F, Cao C X, Dai L, et al. Phase and shape controlled VO2 nanostructures by antimony doping[J].Energy & Environmental Science, 2012,5(9):8708-8715.
Gao Y F, Cao C X, Dai L, et al. Phase and shape controlled VO2 nanostructures by antimony doping[J].Energy & Environmental Science, 2012,5(9):8708-8715.
[30] Tan X G, Yao T, Long R, et al. Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping[J].Scientific Reports, 2012,2:466.
Tan X G, Yao T, Long R, et al. Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping[J].Scientific Reports, 2012,2:466.
[31] Patridge C J, Whittaker L, Ravel B, et al. Elucidating the influence of local structure perturbations on the metal-insulator transitions of V1-xMoxO2 nanowires: mechanistic insights from an X-ray absorption spectroscopy study[J].Journal of Physical Chemistry C,2012,116(5):3728-3736.
Patridge C J, Whittaker L, Ravel B, et al. Elucidating the influence of local structure perturbations on the metal-insulator transitions of V1-xMoxO2 nanowires: mechanistic insights from an X-ray absorption spectroscopy study[J].Journal of Physical Chemistry C,2012,116(5):3728-3736.
[32] Booth J M, Casey P S. Anisotropic structure deformation in the VO2 metal-insulator transition[J].Physical Review Letters,2009,103:086402/1-086402/4
Booth J M, Casey P S. Anisotropic structure deformation in the VO2 metal-insulator transition[J].Physical Review Letters,2009,103:086402/1-086402/4
[33] Zhang J J, He H Y, Xie Y, et al. Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase[J].The Journal of Chemical Physics,2014,141(19):194707/1-194707/5.
Zhang J J, He H Y, Xie Y, et al. Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase[J].The Journal of Chemical Physics,2014,141(19):194707/1-194707/5.
[34] Zhang W H, Wang K, Fan L L, et al. Hole carriers doping effect on the metal-insulator transition of n- incorporated vanadium dioxide thin films[J].The Journal of Physics Chemical C,2014,118(24):12837-12844.
Zhang W H, Wang K, Fan L L, et al. Hole carriers doping effect on the metal-insulator transition of n- incorporated vanadium dioxide thin films[J].The Journal of Physics Chemical C,2014,118(24):12837-12844.
[35] Ren Q H, Wan J Y, Gao Y F. Theoretical study of electronic properties of X-doped (X= F, Cl, Br, I) VO2 nanoparticles for thermochromic energy-saving foils[J].The Journal of Physics Chemical A,2014,118(46):11114-11118.
Ren Q H, Wan J Y, Gao Y F. Theoretical study of electronic properties of X-doped (X= F, Cl, Br, I) VO2 nanoparticles for thermochromic energy-saving foils[J].The Journal of Physics Chemical A,2014,118(46):11114-11118.
[36] Wan J Y, Ren Q H, Wu N N, et al. Density functional theory study of M-doped (M=B, C, N, Mg, Al) VO2 nanoparticles for thermochromic energy-saving foils[J]. Journal of Alloys and Compounds,2016,662:621-627.
Wan J Y, Ren Q H, Wu N N, et al. Density functional theory study of M-doped (M=B, C, N, Mg, Al) VO2 nanoparticles for thermochromic energy-saving foils[J]. Journal of Alloys and Compounds,2016,662:621-627.
[37] Griffiths C H, Eastwood H K. Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide[J].Journal of Applied Physics,1974,45(5):2201-2206.
Griffiths C H, Eastwood H K. Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide[J].Journal of Applied Physics,1974,45(5):2201-2206.
[38] Kresse G, Furthmüller J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B,1996,54(16):11169-11186.
Kresse G, Furthmüller J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B,1996,54(16):11169-11186.
[39] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J].Physical Review Letters,1996,77:3865-3868.
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J].Physical Review Letters,1996,77:3865-3868.
[40] Chen L L, Wang X F, Wan D Y, et al. Energetics, electronic and optical properties of X (X=Si, Ge, Sn, Pb) doped VO2(M) from first-principles calculations[J].Journal of Alloys and Compounds,2017,693:211-220.
Chen L L, Wang X F, Wan D Y, et al. Energetics, electronic and optical properties of X (X=Si, Ge, Sn, Pb) doped VO2(M) from first-principles calculations[J].Journal of Alloys and Compounds,2017,693:211-220.
[41] Rana R S, Nolte D D, Chudnovskii F A. Optical bistability from a thermodynamic phase transition in vanadium dioxide[J].Optics Letters,1992,17:1385-1387.
Rana R S, Nolte D D, Chudnovskii F A. Optical bistability from a thermodynamic phase transition in vanadium dioxide[J].Optics Letters,1992,17:1385-1387.
[42] Liebsch A, Ishida, H, Bihlmayer G. Coulomb correlations and orbital polarization in the metal-insulator transition of VO2[J].Physical Review B,2005,71:085109/1-085109/5.
Liebsch A, Ishida, H, Bihlmayer G. Coulomb correlations and orbital polarization in the metal-insulator transition of VO2[J].Physical Review B,2005,71:085109/1-085109/5.
[43] Dai L, Chen S, Liu J, et al. F-Doped VO2 Nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability[J].Physical Chemistry Chemical Physics,2013,15(28):11723-11729.
Dai L, Chen S, Liu J, et al. F-Doped VO2 Nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability[J].Physical Chemistry Chemical Physics,2013,15(28):11723-11729.
[44] Li W W, Yu Q, Liang J R, et al. Intrinsic evolutions of optical functions, band gap, and higher-energy electronic transitions in VO2 film near the metal-nsulator transition region[J].Applied Physics Letters,2011,99:241903/1-241903/3.
Li W W, Yu Q, Liang J R, et al. Intrinsic evolutions of optical functions, band gap, and higher-energy electronic transitions in VO2 film near the metal-nsulator transition region[J].Applied Physics Letters,2011,99:241903/1-241903/3.
[45] Koethe T C, Hu Z, Haverkort M W, et al.Transfer of spectral weight and symmetry across the metal-insulator transition in VO2[J].Physical Review Letters,2006,97(11):116402/1-116402/4.
Koethe T C, Hu Z, Haverkort M W, et al.Transfer of spectral weight and symmetry across the metal-insulator transition in VO2[J].Physical Review Letters,2006,97(11):116402/1-116402/4.
[46] Luo Z F, Wu Z M, Xu X D, et al. Growth, electrical, and optical properties of nanocrystalline VO2 (011) thin films prepared by thermal oxidation of magnetron sputtered vanadium films[J].Journal of Vacuum Science & Technology A,2010,28(4):595 -599.
Luo Z F, Wu Z M, Xu X D, et al. Growth, electrical, and optical properties of nanocrystalline VO2 (011) thin films prepared by thermal oxidation of magnetron sputtered vanadium films[J].Journal of Vacuum Science & Technology A,2010,28(4):595 -599.
[47] Eyert V. VO2: A novel view from band theory[J].Physical Review Letters,2011,107(1):016401/1-016401/4.
Eyert V. VO2: A novel view from band theory[J].Physical Review Letters,2011,107(1):016401/1-016401/4.
[48] Goodenough J B.The two components of the crystallographic transition in VO2[J].Journal of Solid State Chemistry,1971,3(4):490-500.
Goodenough J B.The two components of the crystallographic transition in VO2[J].Journal of Solid State Chemistry,1971,3(4):490-500.
[49] Sun C, Yan L M, Yue B H, et al. The modulation of metal-insulator transition temperature of vanadium dioxide: a density functional theory study[J].Journal of Materials Chemistry C,2014,2:9283-9293.
Sun C, Yan L M, Yue B H, et al. The modulation of metal-insulator transition temperature of vanadium dioxide: a density functional theory study[J].Journal of Materials Chemistry C,2014,2:9283-9293.
[50] Andersson G. Studies on vanadium oxides II.the crystal structure of vanadium dioxide[J].Acta Chemica Scandinavica,1956,10:623-628.
Andersson G. Studies on vanadium oxides II.the crystal structure of vanadium dioxide[J].Acta Chemica Scandinavica,1956,10:623-628.
[51] Dai L, Chen S, Liu J J, et al. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability[J].Physical Chemistry Chemical Physics,2013,15(28):11723/1-11723/9.
Dai L, Chen S, Liu J J, et al. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability[J].Physical Chemistry Chemical Physics,2013,15(28):11723/1-11723/9.
[52] Yuan X, Zhang W Q, Zhang P H. Hole-lattice coupling and photoinduced insulator-metal transition in VO2 [J].Physical Review. B,Condensed Matter and Materials Physics,2013,88(3):035119.
Yuan X, Zhang W Q, Zhang P H. Hole-lattice coupling and photoinduced insulator-metal transition in VO2 [J].Physical Review. B,Condensed Matter and Materials Physics,2013,88(3):035119.
[53] Burkhardt W, Christmann T, Meyer B K, et al. W-and F-doped VO2 films studied by photoelectron spectrometry [J].Thin Solid Films,1999, 345(2):229-235.
Burkhardt W, Christmann T, Meyer B K, et al. W-and F-doped VO2 films studied by photoelectron spectrometry [J].Thin Solid Films,1999, 345(2):229-235.