• Infrared Technology
  • Vol. 43, Issue 8, 766 (2021)
Kunjie ZHANG*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    ZHANG Kunjie. Research Progress and Trends of High Operating Temperature Infrared Detectors[J]. Infrared Technology, 2021, 43(8): 766 Copy Citation Text show less
    References

    [1] Lior Shkedy, Mayya Brumer, Philip Klipstein, et al. DDevelopment of 10.m pitch XBn detecttor for low SWaP MWIR applicatio ns[C]//Proc. of SPPIE, Infrared Techno logy and Applicaations XLII, 20166, 9819: 98191D(ddoi: 10.1117/12.2220 395).

    [2] Lutz H, Breiter RR, Eich D, et al. HHigh operating temmperature IR-moduules with small pittch for SWaP reduction and high performaance applications[C]//PProc. of SPIE, EElectro-Optical annd Infrared Syste ms: Technology annd Applications VIII, 2011, 8185: 818504(ddoi: 10.1117/12.9003 47).

    [3] Lutz H, Breiterr R, Figgemeier H, et al. Improoved high operatting temperature MCCT MWIR moodules[C]//Proc. of SPIE, Infraared Technology annd Applications XL, 2014, 9070: 90701D(ddoi: 10.1117/12.2050 427).

    [4] Rogalski A, MMartyniuk P. Mid -Wavelength infrrared nBn for HHOT detectors[J]. Jourrnal of Electronic Materials, 2014, 443(8): 2963-2969.

    [5] Philip Klipstein, OOlga Klin, Steve GGrossman, et al. “XXBn” barrier detecctor for high operatinng temperatures[C]]//Proc. of SPIE, QQuantum Sensing aand Nanophotonic Deevices VII, 2010, 77608: 1-10.

    [6] Philip Klipstein, Olga Klin, Steeve Grossman, ett al. High operatting temperature XBnn-InAsSb bariode detectors[C]//Pro c. of SPIE, Quanttum Sensing and Nan ophotonic Devicess IX, 2012, 8268: 1-8.

    [7] Philip Klipstein. “XBn” Barrier pphotodetectors for high sensitivity and high operating teemperature infrareed sensors[C]//Prooc. of SPIE, Infraared Technology and AApplications XXXXIV, 2008, 6940: 1-12.

    [8] Philip Klipstein, Olga Klin, Steve Grossman, et al.MWIR InAsSb XXBn detectors for high operating temperatures[C]//Proc. of SPIE, Infrared Technology and Applications XXXVI, 2010, 7660: 76602Y(doi: 10.1117/12.849503).

    [9] David Z Ting, Alexander Soibel, Cory J Hill, et al. High operating temperature midwave quantum dot barrier infrared detector (QD-BIRD)[C]//Proc. of SPIE, Infrared Technology and Applications XXXVIII, 2012, 8353: 835332 (doi: 10.1117/12.920685).

    [10] David Z Ting, Alexander Soibel, Arezou Khoshakhlagh, et al. Carrier transport in nBn infrared detectors[C]// Proc. of SPIE, Infrared Remote Sensing and Instrumentation XXIV, 2016, 9973: 997304 (doi: 10.1117/12.2238853).

    [11] Kopytko M, Jó?wikowski K, Martyniuk P, et al. Status of HgCdTe barrier infrared detectors grown by MOCVD in military university of technology[J]. Journal of Electronic Materials, 2016, 45(9): 4563-4573.

    [12] Philip Klipstein, Olga Klin, Steve Grossman, et al. MWIR InAsSb XBnn detector (bariode) arrays operating at 150 K[C]//Proc. of SPIE, Infrared Technology and Applications XXXVII, 2011, 8012: 80122R(doi: 10.1117/12.883238).

    [14] Philip Klipstein, Gross Y, Aronov D, et al. Low SWaP MWIR detector based on XBn Focal plane array Proc. of SP.IE[C]//Infrared Technology and Applications XXXIX, 2013, 87041: 1-12.

    [15] Philip Klipstein, Olga Klin, Steve Grossman, et al. XBn barrier photodetectors based on InAsSb with high operating temperatures[C]//Optical Engineering, 2011, 50(6): doi: 10.1117/ 1.3572149.

    [16] Amy W K, LIU Dmitri Lubyshev, QIU Yueming, et al. MBE growth of Sb-based bulk nBn infrared photodetector structures on 6-inch GaSb substrates[C]//Proc. of SPIE, Infrared Technology and Applications XLI, 2015, 9451: 94510T(doi: 10.1117/12.2178122).

    [17] Dmitri Lubyshev, Joel M Fastenau, QIU Yueming, et al. MBE growth of Sb-based nBn photodetectors on large diameter GaAs substrates[C]//Proc. of SPIE, Infrared Technology and Applications XXXIX, 2013, 8704: 870412(doi: 10.1117/12.2019039).

    [18] Yoram Karni, Eran Avnon, Michael Ben Ezra, et al. Large format 15?m pitch XBn detector[C]//Proc. of SPIE, Infrared Technology and Applications XL, 2014, 9070: 90701F(doi: 10.1117/12.2049691).

    [19] Gershon G, Avnon E, Brumer M, et al. 10?m pitch family of InSb and XBn detectors for MWIR imaging[C]//Proc. of SPIE, Infrared Technology and Applications XLIII, 2017, 10177: 101771I(doi:10.1117/12.2261703).

    [20] DAT-CON Defence. Multi-sensor-units[M/OL].[2019-03-06]. https://www.dat-con-defence.com/wp-content/uploads/2020/01/Multi-sensor-units_2020_compressed.pdf.

    [21] Müller R, Gramich V, Wauro M, et al. High operating temperature InAs/GaSb type-II superlattice detectors on GaAs substrate for the long wavelength infrared[J]. Infrared Physics and Technology, 2019, 96:141-144.

    [22] Philip Klipstein, Avnon E, Benny Y, et al. InAs/GaSb Type II superlattice barrier devices with a low dark current and a high-quantum efficiency[C]//Proc. of SPIE, Infrared Technology and Applications XL, 2014, 9070: 90700U(doi: 10.1117/12.2049825).

    [23] Martyniuk P, Hackiewicz K, Rutkowski J, et al. Ultimate performance of IB CID T2SLs InAs/GaSb and InAs/InAsSb longwave photodetectors for high operating temperature condition[J]. Journal of Electronic Materials, 2019, 48(10): 6093-6098.

    [24] Manijeh Razeghi. Sb-based 3rd generation imagers at center for quantum devices[C]//Proc. SPIE, Infrared Technology and Applications XLVI, 2020: doi:10.1117/12.2564813.

    [27] Lynred. DAPHNIS-HD MW[M/OL][2019-11-20]. http://www. lynred. com/ sites/default/ files/2019-10/Daphnis-HD-MW-datasheet.pdf.

    [28] AIM Infrarot-Module GmbH. HiPIR-1280M-MCT MWIR 1280×1024 15 ?m Pitch IDCA[M/OL][2019-03-09]. http://www.aim-ir.com/ fileadmin/files/Data_Sheets_Security/Modules/02_MWIR_IDCA/HiPIR 1280M/2018_AIM_datenblatt_A4_HiPIR-1280M_engl.pdf.

    [29] AIM Infrarot-Module GmbH. HiPIR-Engine HOT MCT 1024×768 10?m PITCH IR ENGINE[M/OL][2019-03-09]. http://www. Aim -ir.com/fileadmin/files/Data_Sheets_Security/Modules/01_Hot Cube/ 2018_AIM_datenblatt_A4_HOT-MCT-1024_engl.pdf.

    ZHANG Kunjie. Research Progress and Trends of High Operating Temperature Infrared Detectors[J]. Infrared Technology, 2021, 43(8): 766
    Download Citation