• Acta Photonica Sinica
  • Vol. 50, Issue 3, 78 (2021)
Penghui LIU, Shiyao LI, Wenwen WANG, Xuyang WENG, Chaoxing WU, Xiongtu ZHOU, and Yongai ZHANG
Author Affiliations
  • College of Physics and Information Engineering, Fuzhou University, Fuzhou350108, China
  • show less
    DOI: 10.3788/gzxb20215003.0323001 Cite this Article
    Penghui LIU, Shiyao LI, Wenwen WANG, Xuyang WENG, Chaoxing WU, Xiongtu ZHOU, Yongai ZHANG. Preparation and Properties of Flexible Liquid Crystal Micro-lens Arrays[J]. Acta Photonica Sinica, 2021, 50(3): 78 Copy Citation Text show less
    References

    [1] P SU, P AN, J MA. Demonstration of an autostereoscopic three-dimensional light-emitting diode display using diffractive optical elements sheet. Journal of Display Technology, 11, 953-958(2015).

    [2] J HONG, Y KIM, H CHOI. Three-dimensional display technologies of recent interest : principles, status, and issues. Applied Optics, 50, 87-115(2011).

    [3] B JAVIDI. Methods for displaying three-dimensional. Proceedings of the IEEE, 94, 502-523(2006).

    [4] Hong ZOU, Xin ZENG, Xin WEN. Glasses-free 3D display based on two-view video synthesize technology. Chinese Journal of Liquid Crystals and Displays, 29, 824-829(2014).

    [5] Xiaoting ZHANG, Fangping CHEN, Lvqing YE. Design of cylindrical lens grating based on free-form surface for naked-eye 3D display. Acta Photonica Sinica, 46, 98-107(2017).

    [6] Yan XING, Qionghua WANG. 3D information acquisition technology of integral imaging. Infrared and Laser Engineering, 3, 66-77(2020).

    [7] Huan DENG, Qionghua WANG. 3D display technology for augmented reality based on integral imaging-A review. Tech Review, 36, 18-24(2018).

    [8] Fei WU, Qionghua WANG, LYU Guojiao. Effect of thickness of pinhole array on viewing angle of integral imaging 3D display. Advanced Engineering Sciences, 49, 186-189(2017).

    [9] Jianpu LIN, Chaofu LIN, Xuyang WENG. High-resistance liquid crystal lens with low driving voltage. Acta Photonica Sinica, 48, 0523001(2019).

    [10] H KWON, Y KIZU, Y KIZAKI. A gradient index liquid crystal microlens array for light-field camera applications. IEEE Photonics Technology Letters, 27, 836-839(2015).

    [11] L Y SHI, A K SRIVASTAVA. 2D-3D switchable display based on a passive polymeric lenticular lens array and electrically suppressed ferroelectric liquid crystal. Optics Letters, 42, 3435-3438(2017).

    [12] J PARK, H KIM, Y KIM. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging. Optics Letters, 29, 2734-2736(2004).

    [13] J S JANG, F JIN, B JAVIDI. Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields. Optics Letters, 28, 1421-1423(2007).

    [14] H CHOI, S W MIN, S JUNG. Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays. Optics Express, 11, 927-932(2003).

    [15] H KIM, J HAHN. The use of a negative index planoconcave lens array for wide-viewing angle integral imaging. Optics Express, 16, 21865-21880(2008).

    [16] Yuyan PENG, Xiongtu ZHOU, Yongai ZHANG. Design and simulation of curved microlens array for integral imaging 3D display. Acta Photonica Sinica, 45, 0322002(2016).

    [17] J H JUNG, Y KIM, Y KIM. Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure. Applied Optics, 48, 998-1007(2009).

    [18] S TOKUNAGA, Y ITOH, H TANAKA. Redox-responsive chiral dopant for quick electrochemical color modulation of cholesteric liquid crystal. Journal of the American Chemical Society, 140, 10946-10949(2018).

    [19] Huan DENG, Shuli LI, Fei WU. Toed--in integral imaging with enhanced 3D viewing angle. Optics and Precision Engineering, 22, 1-6(2014).

    [20] Y LIU, Q H WANG, C C JI. Viewing-angle-enhanced integral imaging system using high-refractive-index medium and curved micro-lens array. Journal of the Society for Information Display, 22, 153-157(2014).

    [21] X P BI, W LI. Fabrication of flexible microlens arrays through vapor-induced dewetting on selectively plasma-treated surfaces. Journal of Materials Chemistry C, 3, 5825-5834(2015).

    [22] L WANG, Y LUO, Z Z LIU. Fabrication of microlens array with controllable high NA and tailored optical characteristics using confined ink-jetting. Applied Surface Science, 442, 417-422(2018).

    [23] Y KIM, J H PARK, S W MIN. Wide-viewing-angle three-dimensional integral imaging using a curved screen and a curved lens array, 5642, 339-346(2005).

    [24] W W WANG, X T ZHOU, Y A ZHANG. Large‑scale microlens arrays on flexible substrate with improved numerical aperture for curved integral imaging 3D display. Scientific Reports, 10, 11741-11788(2020).

    [25] A K SHUKLA, I A PALANI, A MANIVANNAN. Investigations on laser-assisted interference-based rapid texturing of flexible polyimide substrate for photovoltaics applications. Japanese Journal of Applied Physics, 58, 016506(2019).

    [26] H REN, B WU. Liquid crystal lens with large focal length tunability and low operating voltage. Optics Express, 15, 11328-11335(2007).

    Penghui LIU, Shiyao LI, Wenwen WANG, Xuyang WENG, Chaoxing WU, Xiongtu ZHOU, Yongai ZHANG. Preparation and Properties of Flexible Liquid Crystal Micro-lens Arrays[J]. Acta Photonica Sinica, 2021, 50(3): 78
    Download Citation