• Chinese Journal of Lasers
  • Vol. 51, Issue 1, 0107003 (2024)
Puxiang Lai1、2、3、4、*, Qi Zhao1、2, Yingying Zhou1、2, Shengfu Cheng1、2, Man Woo Chi1、2, Huanhao Li1、2, Zhipeng Yu1、2, Xiazi Huang1、2, Jing Yao1、2, Weiran Pang1、2, Haoran Li1、2, Haofan Huang1、2, Wenzhao Li1、2, Yuandong Zheng1、2, Zhiyuan Wang1、2, Chuqi Yuan1、2, and Tianting Zhong1、2、**
Author Affiliations
  • 1Department of Biomedical Engineering, Hong Kong Polytechnic University, Kowloon999077, Hong Kong, China
  • 2Shenzhen Research Institute, Hong Kong Polytechnic University, Shenzhen 518055, Guangdong, China
  • 3Photonics Research Institute, Hong Kong Polytechnic University, Kowloon999077, Hong Kong, China
  • 4Research Institute for Sports Science and Technology, Hong Kong Polytechnic University, Kowloon999077, Hong Kong, China
  • show less
    DOI: 10.3788/CJL231318 Cite this Article Set citation alerts
    Puxiang Lai, Qi Zhao, Yingying Zhou, Shengfu Cheng, Man Woo Chi, Huanhao Li, Zhipeng Yu, Xiazi Huang, Jing Yao, Weiran Pang, Haoran Li, Haofan Huang, Wenzhao Li, Yuandong Zheng, Zhiyuan Wang, Chuqi Yuan, Tianting Zhong. Deep-Tissue Optics: Technological Development and Applications (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0107003 Copy Citation Text show less
    References

    [1] Luker G D, Luker K E. Optical imaging: current applications and future directions[J]. Journal of Nuclear Medicine, 49, 1-4(2008).

    [2] Chen H Y, Rogalski M M, Anker J N. Advances in functional X-ray imaging techniques and contrast agents[J]. Physical Chemistry Chemical Physics: PCCP, 14, 13469-13486(2012).

    [3] Balas C. Review of biomedical optical imaging: a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis[J]. Measurement Science and Technology, 20, 104020(2009).

    [4] Rotter S, Gigan S. Light fields in complex media: mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 89, 015005(2017).

    [5] de Aguiar H B, Gigan S, Brasselet S. Polarization recovery through scattering media[J]. Science Advances, 3, e1600743(2017).

    [6] Dzik-Jurasz A K. Molecular imaging in vivo: an introduction[J]. The British Journal of Radiology, 76, S98-S109(2003).

    [7] James M L, Gambhir S S. A molecular imaging primer: modalities, imaging agents, and applications[J]. Physiological Reviews, 92, 897-965(2012).

    [8] Elliott A D. Confocal microscopy: principles and modern practices[J]. Current protocols in cytometry, 92, e68(2020).

    [9] Benninger R K P, Piston D W. Two-photon excitation microscopy for the study of living cells and tissues[J]. Current Protocols in Cell Biology, 59, 1-24(2013).

    [10] Cho S W, Park S M, Park B et al. High-speed photoacoustic microscopy: a review dedicated on light sources[J]. Photoacoustics, 24, 100291(2021).

    [11] Pircher M, Zawadzki R J. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging[J]. Biomedical Optics Express, 8, 2536-2562(2017).

    [12] Valdastri P, Simi M, Webster R J III. Advanced technologies for gastrointestinal endoscopy[J]. Annual Review of Biomedical Engineering, 14, 397-429(2012).

    [13] Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics[J]. Journal of Biomedical Optics, 15, 011109(2010).

    [14] Ping S[M]. Introduction to wave scattering, localization and mesoscopic phenomena(2006).

    [15] Guo E L, Shi Y J, Zhu S et al. Scattering imaging with deep learning: physical and data joint modeling optimization[J]. Infrared and Laser Engineering, 51, 20220563(2022).

    [16] Yoon S, Kim M, Jang M et al. Deep optical imaging within complex scattering media[J]. Nature Reviews Physics, 2, 141-158(2020).

    [17] Cao H, Mosk A P, Rotter S. Shaping the propagation of light in complex media[J]. Nature Physics, 18, 994-1007(2022).

    [18] Park J H, Yu Z P, Lee K R et al. Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications[J]. APL Photonics, 3, 100901(2018).

    [19] Gigan S, Katz O, Rotter S et al. Roadmap on wavefront shaping and deep imaging in complex media[J]. Journal of Physics: Photonics, 4, 042501(2022).

    [20] Yu Z P, Li H H, Zhong T T et al. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields[J]. The Innovation, 3, 100292(2022).

    [21] Yuan X, Han S S. Single-pixel neutron imaging with artificial intelligence: breaking the barrier in multi-parameter imaging, sensitivity, and spatial resolution[J]. The Innovation, 2, 100100(2021).

    [22] Göppert-Mayer M. Über elementarakte mit zwei quantensprüngen[J]. Annalen Der Physik, 401, 273-294(1931).

    [23] Bayer E, Schaack G. Two-photon absorption of CaF2∶Eu2+[J]. Physica Status Solidi (b), 41, 827-835(1970).

    [24] Svoboda K, Yasuda R. Principles of two-photon excitation microscopy and its applications to neuroscience[J]. Neuron, 50, 823-839(2006).

    [25] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).

    [26] Pawlicki M, Collins H A, Denning R G et al. Two-photon absorption and the design of two-photon dyes[J]. Angewandte Chemie International Edition, 48, 3244-3266(2009).

    [27] Theer P, Denk W. On the fundamental imaging-depth limit in two-photon microscopy[J]. Journal of the Optical Society of America A, 23, 3139-3149(2006).

    [28] Wu Z J, Rademakers T, Kiessling F et al. Multi-photon microscopy in cardiovascular research[J]. Methods, 130, 79-89(2017).

    [29] Escobet-Montalbán A, Gasparoli F M, Nylk J et al. Three-photon light-sheet fluorescence microscopy[J]. Optics Letters, 43, 5484-5487(2018).

    [30] Horton N G, Wang K, Kobat D et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 7, 205-209(2013).

    [31] Berlage C, Tantirigama M L S, Babot M et al. Deep tissue scattering compensation with three-photon F-SHARP[J]. Optica, 8, 1613-1619(2021).

    [32] Yao J, Gao Y F, Yin Y X et al. Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics[J]. Optics Letters, 47, 989-992(2022).

    [33] Goldschmidt J C, Fischer S. Upconversion for photovoltaics-a review of materials, devices and concepts for performance enhancement[J]. Advanced Optical Materials, 3, 510-535(2015).

    [34] Richards B S, Hudry D, Busko D et al. Photon upconversion for photovoltaics and photocatalysis: a critical review[J]. Chemical Reviews, 121, 9165-9195(2021).

    [35] Chen G Y, Qiu H L, Prasad P N et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics[J]. Chemical Reviews, 114, 5161-5214(2014).

    [36] Nutte T, Kong C S, Warram J M et al. Specimen mapping in head and neck cancer using fluorescence imaging[J]. Laryngoscope Investigative Otolaryngology, 2, 447-452(2017).

    [37] Luo S L, Zhang E L, Su Y P et al. A review of NIR dyes in cancer targeting and imaging[J]. Biomaterials, 32, 7127-7138(2011).

    [38] Welsher K, Liu Z, Sherlock S P et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology, 4, 773-780(2009).

    [39] Chen Y Y, Xue L R, Zhu Q Q et al. Recent advances in second near-infrared region (NIR-II) fluorophores and biomedical applications[J]. Frontiers in Chemistry, 9, 750404(2021).

    [40] Chen S, Weitemier A Z, Zeng X et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J]. Science, 359, 679-684(2018).

    [41] Li Y F, He M B, Wu T X et al. Progress and application of near-infrared II confocal microscopy (invited)[J]. Infrared and Laser Engineering, 51, 20220494(2022).

    [42] He L Y, Zhang Y C, Chen J B et al. A multifunctional targeted nanoprobe with high NIR-II PAI/MRI performance for precise theranostics of orthotopic early-stage hepatocellular carcinoma[J]. Journal of Materials Chemistry B, 9, 8779-8792(2021).

    [43] Cao J, Zhu B L, Zheng K F et al. Recent progress in NIR-II contrast agent for biological imaging[J]. Frontiers in Bioengineering and Biotechnology, 7, 487(2020).

    [44] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).

    [45] Zhang H Q, Fu P, Liu Y et al. Large-depth three-photon fluorescence microscopy imaging of cortical microvasculature on nonhuman primates with bright AIE probe in vivo[J]. Biomaterials, 289, 121809(2022).

    [46] Mizuta Y. Advances in two-photon imaging in plants[J]. Plant and Cell Physiology, 62, 1224-1230(2021).

    [47] Jeon S W, Kim J B, Lee D H et al. Review on practical photoacoustic microscopy[J]. Photoacoustics, 15, 100141(2019).

    [48] Cheng S F, Zhou Y Y, Chen J B et al. High-resolution photoacoustic microscopy with deep penetration through learning[J]. Photoacoustics, 25, 100314(2022).

    [49] Xu M H, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 77, 041101(2006).

    [50] Zackrisson S, van de Ven S M W Y, Gambhir S S. Light in and sound out: emerging translational strategies for photoacoustic imaging[J]. Cancer Research, 74, 979-1004(2014).

    [51] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).

    [52] Zhu Y W, Lin X Y, Yu Y J. Current developments in photoacoustic imaging technologies for cultural heritage conservation[J]. Laser & Optoelectronics Progress, 60, 2400005(2023).

    [53] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).

    [54] Mirg S, Turner K L, Chen H Y et al. Photoacoustic imaging for microcirculation[J]. Microcirculation, 29, e12776(2022).

    [55] Zhu X Y, Huang Q, DiSpirito A et al. Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy[J]. Light: Science & Applications, 11, 138(2022).

    [56] Lü J, Xu Y, Xu L et al. Quantitative functional evaluation of liver fibrosis in mice with dynamic contrast-enhanced photoacoustic imaging[J]. Radiology, 300, 89-97(2021).

    [57] Hussain A, Hondebrink E, Staley J et al. Photoacoustic and acousto-optic tomography for quantitative and functional imaging[J]. Optica, 5, 1579-1589(2018).

    [58] Brown E L, Lefebvre T L, Sweeney P W et al. Quantification of vascular networks in photoacoustic mesoscopy[J]. Photoacoustics, 26, 100357(2022).

    [59] Sun X D, Shi Y J. Temperature‑responsive phase‑change AuNR@PNIPAM nanoprobe for the second near‑infrared region tumor‑contrast photoacoustic imaging[J]. Chinese Journal of Lasers, 50, 2107104(2023).

    [60] Yu Z P, Li H H, Lai P X. Wavefront shaping and its application to enhance photoacoustic imaging[J]. Applied Sciences, 7, 1320(2017).

    [61] Choi W S, Park E Y, Jeon S W et al. Clinical photoacoustic imaging platforms[J]. Biomedical Engineering Letters, 8, 139-155(2018).

    [62] Zhang Y, Olick-Gibson J, Khadria A et al. Photoacoustic vector tomography for deep hemodynamic imaging[EB/OL]. https:∥arxiv.org/abs/2209.08706

    [63] Erfanzadeh M, Zhu Q. Photoacoustic imaging with low-cost sources; A review[J]. Photoacoustics, 14, 1-11(2019).

    [64] Yao J J, Kaberniuk A A, Li L et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe[J]. Nature Methods, 13, 67-73(2016).

    [65] Wang L V. Prospects of photoacoustic tomography[J]. Medical Physics, 35, 5758-5767(2008).

    [66] Zhang P F, Li L, Lin L et al. In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets[J]. Light: Science & Applications, 8, 36(2019).

    [67] Cui M X, Zuo H Z, Wang X H et al. Adaptive photoacoustic computed tomography[J]. Photoacoustics, 21, 100223(2021).

    [68] Manohar S, Dantuma M. Current and future trends in photoacoustic breast imaging[J]. Photoacoustics, 16, 100134(2019).

    [69] Yao J J, Wang L V. Recent progress in photoacoustic molecular imaging[J]. Current Opinion in Chemical Biology, 45, 104-112(2018).

    [70] Attia A B E, Balasundaram G, Moothanchery M et al. A review of clinical photoacoustic imaging: current and future trends[J]. Photoacoustics, 16, 100144(2019).

    [71] He H L, Englert L, Ntziachristos V. Optoacoustic endoscopy of the gastrointestinal tract[J]. ACS Photonics, 10, 559-570(2023).

    [72] He G S. Optical phase conjugation: principles, techniques, and applications[J]. Progress in Quantum Electronics, 26, 131-191(2002).

    [73] Yaqoob Z, Psaltis D, Feld M S et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2, 110-115(2008).

    [74] Liu Y, Lai P X, Ma C et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light[J]. Nature Communications, 6, 5904(2015).

    [75] Xu X, Liu H L, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154-157(2011).

    [76] Cheng Z T, Li C, Khadria A et al. High-gain and high-speed wavefront shaping through scattering media[J]. Nature Photonics, 17, 299-305(2023).

    [77] Davies R, Kasper M. Adaptive optics for astronomy[J]. Annual Review of Astronomy and Astrophysics, 50, 305-351(2012).

    [78] Wenhan J. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 45, 170489(2018).

    [79] Ji N, Milkie D E, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues[J]. Nature Methods, 7, 141-147(2010).

    [80] Ji N. Adaptive optical fluorescence microscopy[J]. Nature Methods, 14, 374-380(2017).

    [81] Jonnal R S, Kocaoglu O P, Zawadzki R J et al. A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future[J]. Investigative Ophthalmology & Visual Science, 57, OCT51-OCT68(2016).

    [82] Zhang Q R, Hu Q, Berlage C et al. Adaptive optics for optical microscopy[J]. Biomedical Optics Express, 14, 1732-1756(2023).

    [83] Badon A, Barolle V, Irsch K et al. Distortion matrix concept for deep optical imaging in scattering media[J]. Science Advances, 6, eaay7170(2020).

    [84] Burns S A, Elsner A E, Sapoznik K A et al. Adaptive optics imaging of the human retina[J]. Progress in Retinal and Eye Research, 68, 1-30(2019).

    [85] Yu H S, Park J C, Lee K R et al. Recent advances in wavefront shaping techniques for biomedical applications[J]. Current Applied Physics, 15, 632-641(2015).

    [86] Mosk A P, Lagendijk A, Lerosey G et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 6, 283-292(2012).

    [87] Wang Y M, Judkewitz B, DiMarzio C A et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 3, 928(2012).

    [88] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 6, 657-661(2012).

    [89] Ruan H W, Jang M S, Yang C H. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light[J]. Nature Communications, 6, 8968(2015).

    [90] Wang D F, Zhou E H, Brake J et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2, 728-735(2015).

    [91] Cui M, Yang C H. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 18, 3444-3455(2010).

    [92] Ma C, Xu X, Liu Y et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nature Photonics, 8, 931-936(2014).

    [93] Yu Z P, Huangfu J T, Zhao F Y et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 8, 2927(2018).

    [94] Ruan H W, Haber T, Liu Y et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 4, 1337-1343(2017).

    [95] Cheng Z T, Wang L V. Focusing light into scattering media with ultrasound-induced field perturbation[J]. Light: Science & Applications, 10, 159(2021).

    [96] Li Z H, Yu Z P, Hui H et al. Edge enhancement through scattering media enabled by optical wavefront shaping[J]. Photonics Research, 8, 954-962(2020).

    [97] Lai P X, Wang L V, Tay J W et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 9, 126-132(2015).

    [98] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [99] Jang M, Ruan H W, Zhou H J et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Optics Express, 22, 14054-14071(2014).

    [100] Vellekoop I M. Controlling the propagation of light in disordered scattering media[EB/OL]. https:∥arxiv.org/abs/0807.1087

    [101] Horstmeyer R, Ruan H W, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 9, 563-571(2015).

    [102] Fayyaz Z, Mohammadian N, Reza Rahimi Tabar M et al. A comparative study of optimization algorithms for wavefront shaping[J]. Journal of Innovative Optical Health Sciences, 12, 1942002(2019).

    [103] Liu L X, Ma K, Qu Y et al. High-contrast light focusing through scattering media with multi-pixel encoding[J]. Applied Physics Express, 14, 092009(2021).

    [104] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 281, 3071-3080(2008).

    [105] Liu H, Zhu X Y, Zhang X X et al. Universal and improved mutation strategy for feedback-based wavefront shaping optimization algorithm[J]. Acta Photonica Sinica, 52, 0629002(2023).

    [106] Li H H, Woo C M, Zhong T T et al. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm[J]. Photonics Research, 9, 202-212(2021).

    [107] Zhao Q, Woo C M, Li H H et al. Parameter-free optimization algorithm for iterative wavefront shaping[J]. Optics Letters, 46, 2880-2883(2021).

    [108] Woo C M, Zhao Q, Zhong T T et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping[J]. APL Photonics, 7, 046109(2022).

    [109] Tzang O, Niv E, Singh S et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform[J]. Nature Photonics, 13, 788-793(2019).

    [110] Mujumdar S. Transmission matrices go nonlinear[J]. Nature Physics, 19, 1563-1564(2023).

    [111] Popoff S M, Lerosey G, Carminati R et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 104, 100601(2010).

    [112] Choi Y, Yang T D, Fang-Yen C et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium[J]. Physical Review Letters, 107, 023902(2011).

    [113] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 20, 1733-1740(2012).

    [114] Yu H S, Lee K R, Park Y K. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes[J]. Optics Express, 25, 8036-8047(2017).

    [115] Wang Z Y, Wu D X, Huang G Q et al. Feedback-assisted transmission matrix measurement of a multimode fiber in a referenceless system[J]. Optics Letters, 46, 5542-5545(2021).

    [116] Xu J, Ruan H W, Liu Y et al. Focusing light through scattering media by transmission matrix inversion[J]. Optics Express, 25, 27234-27246(2017).

    [117] Yoon J H, Lee K R, Park J C et al. Measuring optical transmission matrices by wavefront shaping[J]. Optics Express, 23, 10158-10167(2015).

    [118] Boniface A, Dong J, Gigan S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix[J]. Nature Communications, 11, 6154(2020).

    [119] Cheng S F, Zhong T T, Woo C M et al. Alternating projection-based phase optimization for arbitrary glare suppression through multimode fiber[J]. Optics and Lasers in Engineering, 161, 107368(2023).

    [120] Choi W J, Mosk A P, Park Q H et al. Transmission eigenchannels in a disordered medium[J]. Physical Review B, 83, 134207(2011).

    [121] Yılmaz H, Hsu C W, Yamilov A et al. Transverse localization of transmission eigenchannels[J]. Nature Photonics, 13, 352-358(2019).

    [122] Kim M, Choi Y, Yoon C et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels[J]. Nature Photonics, 6, 581-585(2012).

    [123] Devaud L, Rauer B, Kühmayer M et al. Temporal light control in complex media through the singular-value decomposition of the time-gated transmission matrix[J]. Physical Review A, 105, L051501(2022).

    [124] Zhang H K, Zhang B, Liu K G et al. Large-scale, high-contrast glare suppression with low-transmittance eigenchannels of aperture-target transmission matrices[J]. Optics Letters, 46, 1498-1501(2021).

    [125] He Y, Wu D X, Zhang R S et al. Genetic-algorithm-assisted coherent enhancement absorption in scattering media by exploiting transmission and reflection matrices[J]. Optics Express, 29, 20353-20369(2021).

    [126] Yu H, Park J H, Park Y K. Measuring large optical reflection matrices of turbid media[J]. Optics Communications, 352, 33-38(2015).

    [127] Cao J, Yang Q, Miao Y S et al. Enhance the delivery of light energy ultra-deep into turbid medium by controlling multiple scattering photons to travel in open channels[J]. Light: Science & Applications, 11, 108(2022).

    [128] Yu Z P, Li H H, Zhong T T et al. Enhancing spatiotemporal focusing of light deep inside scattering media with Time-Gated Reflection Matrix[J]. Light: Science & Applications, 11, 167(2022).

    [129] Kang S, Jeong S, Choi W et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves[J]. Nature Photonics, 9, 253-258(2015).

    [130] Badon A, Li D Y, Lerosey G et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media[J]. Science Advances, 2, e1600370(2016).

    [131] Lee S Y. Imaging through optical multimode fiber: towards ultra-thin endoscopy[D], 2-10(2022).

    [132] Osnabrugge G, Horstmeyer R, Papadopoulos I N et al. Generalized optical memory effect[J]. Optica, 4, 886-892(2017).

    [133] Schott S, Bertolotti J, Léger J F et al. Characterization of the angular memory effect of scattered light in biological tissues[J]. Optics Express, 23, 13505-13516(2015).

    [134] Chang J L, Wetzstein G. Single-shot speckle correlation fluorescence microscopy in thick scattering tissue with image reconstruction priors[J]. Journal of Biophotonics, 11, e201700224(2018).

    [135] Hofer M, Soeller C, Brasselet S et al. Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations[J]. Optics Express, 26, 9866-9881(2018).

    [136] Shi Y Y, Liu Y W, Wang J M et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax[J]. Applied Physics Letters, 110, 231101(2017).

    [137] Cheng Q Q, Guo E L, Gu J et al. De-noising imaging through diffusers with autocorrelation[J]. Applied Optics, 60, 7686-7695(2021).

    [138] Katz O, Heidmann P, Fink M et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 8, 784-790(2014).

    [139] Porat A, Andresen E R, Rigneault H et al. Widefield lensless imaging through a fiber bundle via speckle correlations[J]. Optics Express, 24, 16835-16855(2016).

    [140] Liu H L, Lai P X, Gao J J et al. Alternative interpretation of speckle autocorrelation imaging through scattering media[J]. Photonic Sensors, 12, 220308(2022).

    [141] Cheng S F, Li H H, Luo Y Q et al. Artificial intelligence-assisted light control and computational imaging through scattering media[J]. Journal of Innovative Optical Health Sciences, 12, 1930006(2019).

    [142] Horisaki R, Takagi R, Tanida J. Learning-based focusing through scattering media[J]. Applied Optics, 56, 4358-4362(2017).

    [143] Luo Y Q, Yan S X, Li H H et al. Focusing light through scattering media by reinforced hybrid algorithms[J]. APL Photonics, 5, 016109(2020).

    [144] Luo Y Q, Yan S X, Li H H et al. Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media[J]. Photonics Research, 9, B262-B278(2021).

    [145] Turpin A, Vishniakou I, Seelig J D. Light scattering control in transmission and reflection with neural networks[J]. Optics Express, 26, 30911-30929(2018).

    [146] Fan P F, Wang Y F, Ruddlesden M et al. Deep learning enabled scalable calibration of a dynamically deformed multimode fiber[J]. Advanced Photonics Research, 3, 2100304(2022).

    [147] D'Arco A, Xia F, Boniface A et al. Physics-based neural network for non-invasive control of coherent light in scattering media[J]. Optics Express, 30, 30845-30856(2022).

    [148] Borhani N, Kakkava E, Moser C et al. Learning to see through multimode fibers[J]. Optica, 5, 960-966(2018).

    [149] Caramazza P, Moran O, Murray-Smith R et al. Transmission of natural scene images through a multimode fibre[J]. Nature Communications, 10, 2029(2019).

    [150] Zheng S S, Wang H, Dong S et al. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network[J]. Photonics Research, 9, B220-B228(2021).

    [151] Popoff S, Lerosey G, Fink M et al. Image transmission through an opaque material[J]. Nature Communications, 1, 81(2010).

    [152] Lyu M, Wang H, Li G W et al. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 1, 036002(2019).

    [153] Li S, Deng M, Lee J et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 5, 803-813(2018).

    [154] Rivenson Y, Zhang Y B, Günaydın H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141(2018).

    [155] Guo E L, Zhu S, Sun Y et al. Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect[J]. Optics Express, 28, 2433-2446(2020).

    [156] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 5, 1181-1190(2018).

    [157] Zhao Q, Li H H, Yu Z P et al. Speckle-based optical cryptosystem and its application for human face recognition via deep learning[J]. Advanced Science, 9, 2202407(2022).

    [158] Li H H, Yu Z P, Zhao Q et al. Learning-based super-resolution interpolation for sub-Nyquist sampled laser speckles[J]. Photonics Research, 11, 631-642(2023).

    [159] Zhang X Y, Gao J J, Gan Y et al. Different channels to transmit information in scattering media[J]. PhotoniX, 4, 1-13(2023).

    [160] Li Z W, Zhou W, Zhang S Q et al. Self-supervised dynamic learning for long-term high-fidelity image transmission through unstabilized diffusive media[EB/OL]. https:∥www.researchsquare.com/article/rs-2858332/v1

    [161] Rivenson Y, Liu T R, Wei Z S et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning[J]. Light: Science & Applications, 8, 23(2019).

    [162] Kang L, Li X F, Zhang Y et al. Deep learning enables ultraviolet photoacoustic microscopy based histological imaging with near real-time virtual staining[J]. Photoacoustics, 25, 100308(2022).

    [163] Choi Y, Yoon C, Kim M et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber[J]. Physical Review Letters, 109, 203901(2012).

    [164] Ohayon S, Caravaca-Aguirre A, Piestun R et al. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging[J]. Biomedical Optics Express, 9, 1492-1509(2018).

    [165] Turtaev S, Leite I T, Altwegg-Boussac T et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging[J]. Light: Science & Applications, 7, 92(2018).

    [166] Plöschner M, Kollárová V, Dostál Z et al. Multimode fibre: light-sheet microscopy at the tip of a needle[J]. Scientific Reports, 5, 18050(2015).

    [167] Caravaca-Aguirre A M, Piestun R. Single multimode fiber endoscope[J]. Optics Express, 25, 1656-1665(2017).

    [168] Vasquez-Lopez S A, Turcotte R, Koren V et al. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber[J]. Light: Science & Applications, 7, 110(2018).

    [169] Choi W, Kang M, Hong J H et al. Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues[J]. Nature Communications, 13, 4469(2022).

    [170] Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres[J]. Nature Photonics, 9, 529-535(2015).

    [171] Zhong J S, Wen Z, Li Q Z et al. Efficient reference-less transmission matrix retrieval for a multimode fiber using fast Fourier transform[EB/OL]. https:∥arxiv.org/abs/2302.13524

    [172] Shin J, Bosworth B T, Foster M A. Compressive fluorescence imaging using a multi-core fiber and spatially dependent scattering[J]. Optics Letters, 42, 109-112(2016).

    [173] Tzang O, Caravaca-Aguirre A M, Wagner K et al. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres[J]. Nature Photonics, 12, 368-374(2018).

    [174] Zhong T T, Yu Z P, Li H H et al. Active wavefront shaping for controlling and improving multimode fiber sensor[J]. Journal of Innovative Optical Health Sciences, 12, 1942007(2019).

    [175] Rahmani B, Loterie D, Konstantinou G et al. Multimode optical fiber transmission with a deep learning network[J]. Light: Science & Applications, 7, 69(2018).

    [176] Song B B, Jin C, Wu J X et al. Deep learning image transmission through a multimode fiber based on a small training dataset[J]. Optics Express, 30, 5657-5672(2022).

    [177] Caravaca-Aguirre A M, Niv E, Conkey D B et al. Real-time resilient focusing through a bending multimode fiber[J]. Optics Express, 21, 12881-12887(2013).

    [178] Sun J W, Wu J C, Wu S et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope[J]. Light: Science & Applications, 11, 204(2022).

    [179] Wen Z, Dong Z Y, Deng Q L et al. Single multimode fibre for in vivo light-field-encoded endoscopic imaging[J]. Nature Photonics, 17, 679-687(2023).

    [180] Liang Y Z, Fu W B, Li Q et al. Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound[J]. Nature Communications, 13, 7604(2022).

    [181] Wang L, Zhao Y W, Zheng B et al. Ultrawide-bandwidth high-resolution all-optical intravascular ultrasound using miniaturized photoacoustic transducer[J]. Science Advances, 9, eadg8600(2023).

    [182] Ruan H, Brake J, Robinson J E et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light[J]. Science Advances, 3, eaao5520(2017).

    [183] Yoon J, Lee M J, Lee K et al. Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping[J]. Scientific Reports, 5, 13289(2015).

    [184] Park S, Guo Y Y, Jia X T et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 20, 612-619(2017).

    [185] Zhong T T, Qiu Z H, Wu Y et al. Optically selective neuron stimulation with a wavefront shaping-empowered multimode fiber[J]. Advanced Photonics Research, 3, 2100231(2022).

    [186] Li H H, Yu Z P, Zhao Q et al. Accelerating deep learning with high energy efficiency: from microchip to physical systems[J]. The Innovation, 3, 100252(2022).

    [187] Gröhl J, Schellenberg M, Dreher K et al. Deep learning for biomedical photoacoustic imaging: a review[J]. Photoacoustics, 22, 100241(2021).

    [188] Fu Y B, Lei Y, Wang T H et al. Deep learning in medical image registration: a review[J]. Physics in Medicine & Biology, 65, 20TR01(2020).

    [189] Klapoetke N C, Murata Y, Kim S S et al. Independent optical excitation of distinct neural populations[J]. Nature Methods, 11, 338-346(2014).

    [190] Zhang F, Prigge M, Beyrière F et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri[J]. Nature Neuroscience, 11, 631-633(2008).

    [191] Shemesh O A, Tanese D, Zampini V et al. Temporally precise single-cell-resolution optogenetics[J]. Nature Neuroscience, 20, 1796-1806(2017).

    Puxiang Lai, Qi Zhao, Yingying Zhou, Shengfu Cheng, Man Woo Chi, Huanhao Li, Zhipeng Yu, Xiazi Huang, Jing Yao, Weiran Pang, Haoran Li, Haofan Huang, Wenzhao Li, Yuandong Zheng, Zhiyuan Wang, Chuqi Yuan, Tianting Zhong. Deep-Tissue Optics: Technological Development and Applications (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0107003
    Download Citation