• Frontiers of Optoelectronics
  • Vol. 13, Issue 2, 139 (2020)
Haoran MU1, Zeke LIU2, Xiaozhi BAO3, Zhichen WAN1, Guanyu LIU4、*, Xiangping LI4, Huaiyu SHAO3, Guichuan XING3, Babar SHABBIR1, Lei LI5, Tian SUN2, Shaojuan LI2, Wanli MA2, and Qiaoliang BAO1
Author Affiliations
  • 1Department of Materials Science and Engineering and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
  • 2Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
  • 3Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Macau, China
  • 4Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
  • 5Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Collaborative Innovation Center of Advanced Laser Technology and Emerging Industry, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • show less
    DOI: 10.1007/s12200-020-1018-y Cite this Article
    Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3-xP nanocrystals[J]. Frontiers of Optoelectronics, 2020, 13(2): 139 Copy Citation Text show less
    References

    [1] Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fibre lasers. Nature Photonics, 2013, 7(11): 842–845

    [2] Haus H A. Mode-locking of lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1173–1185

    [3] Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435–453

    [4] Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H, Sun Z. Nonlinear optics with 2D layered materials. Advanced Materials, 2018, 30 (24): 1705963

    [5] Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238

    [6] Bao Q, Zhang H,Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083

    [7] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L. Exciton dynamics in suspended monolayer and fewlayer MoS2 2D crystals. ACS Nano, 2013, 7(2): 1072–1080

    [8] Woodward R I, Kelleher E J. 2D saturable absorbers for fibre lasers. Applied Sciences, 2015, 5(4): 1440–1456

    [9] artinez A, Yamashita S. 10 GHz fundamental mode fiber laser using a graphene saturable absorber. Applied Physics Letters, 2012, 101(4): 041118

    [10] Liu W, Pang L, Han H, Liu M, Lei M, Fang S, Teng H, Wei Z. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Optics Express, 2017, 25(3): 2950–2959

    [11] Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C T, Wu T C, Wu Q, Zheng Z, Hasan T. 102 fs pulse generation from a longterm stable, inkjet-printed black phosphorus-mode-locked fiber laser. Optics Express, 2018, 26(10): 12506–12513

    [12] Jiang T, Yin K, Wang C, You J, Ouyang H, Miao R, Zhang C, Wei K, Li H, Chen H, Zhang R, Zheng X, Xu Z, Cheng X, Zhang H. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Research, 2020, 8(1): 78–90

    [13] Li P, Chen Y, Yang T, Wang Z, Lin H, Xu Y, Li L, Mu H, Shivananju B N, Zhang Y, Zhang Q, Pan A, Li S, Tang D, Jia B, Zhang H, Bao Q. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Applied Materials & Interfaces, 2017, 9(14): 12759–12765

    [14] Ge Y, Zhu Z, Xu Y, Chen Y, Chen S, Liang Z, Song Y, Zou Y, Zeng H, Xu S, Zhang H, Fan D. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Advanced Optical Materials, 2018, 6(4): 1701166

    [15] Guo B,Wang S H,Wu Z X,Wang Z X,Wang D H, Huang H, Zhang F, Ge Y Q, Zhang H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Optics Express, 2018, 26 (18): 22750–22760

    [16] Kou L Z, Tan X, Ma Y D, Tahini H, Zhou L J, Sun Z Q, Du A J, Chen C F, Smith S C. Tetragonal bismuth bilayer: a stable and robust quantum spin hall insulator. 2D Materials, 2015, 4: 045010

    [17] Comin A, Manna L. New materials for tunable plasmonic colloidal nanocrystals. Chemical Society Reviews, 2014, 43(11): 3957–3975

    [18] Liu X, Swihart M T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chemical Society Reviews, 2014, 43(11): 3908– 3920

    [19] Liu Z, Mu H, Xiao S, Wang R, Wang Z, Wang W, Wang Y, Zhu X, Lu K, Zhang H, Lee S T, Bao Q, Ma W. Pulsed lasers employing solution-processed plasmonic Cu3 – xP colloidal nanocrystals. Advanced Materials, 2016, 28(18): 3535–3542

    [20] Scotognella F, Della Valle G, Srimath Kandada A R, Dorfs D, Zavelani-Rossi M, Conforti M, Miszta K, Comin A, Korobchevskaya K, Lanzani G, Manna L, Tassone F. Plasmon dynamics in colloidal Cu2 – xSe nanocrystals. Nano Letters, 2011, 11(11): 4711– 4717

    [21] Kriegel I, Jiang C, Rodríguez-Fernández J, Schaller R D, Talapin D V, da Como E, Feldmann J. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. Journal of the American Chemical Society, 2012, 134(3): 1583–1590

    [22] Luther J M, Jain P K, Ewers T, Alivisatos A P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature Materials, 2011, 10(5): 361–366

    [23] Hamanaka Y, Hirose T, Yamada K, Kuzuya T. Plasmonic enhancement of third-order nonlinear optical susceptibilities in self-doped Cu2 – xS nanoparticles. Optical Materials Express, 2016, 6(12): 3838–3848

    [24] Liu X, Guo Q, Qiu J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Advanced Materials, 2017, 29(14): 1605886

    [25] Henkes A E, Schaak R E. Trioctylphosphine: a general phosphorus source for the low-temperature conversion of metals into metal phosphides. Chemistry of Materials, 2007, 19(17): 4234–4242

    [26] Hsu S W, Ngo C, Tao A R. Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. Nano Letters, 2014, 14(5): 2372–2380

    [27] Popa D, Sun Z, Hasan T, Torrisi F, Wang F, Ferrari A C. Graphene Q-switched, tunable fiber laser. Applied Physics Letters, 2011, 98 (7): 073106

    Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3-xP nanocrystals[J]. Frontiers of Optoelectronics, 2020, 13(2): 139
    Download Citation