• Photonics Research
  • Vol. 12, Issue 10, 2365 (2024)
Bowen Fan1,2, Jian Li1,2,*, Zijia Cheng1, Xiaohui Xue2, and Mingjiang Zhang2,3
Author Affiliations
  • 1College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 2Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), Taiyuan University of Technology, Taiyuan 030024, China
  • 3College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.1364/PRJ.528799 Cite this Article Set citation alerts
    Bowen Fan, Jian Li, Zijia Cheng, Xiaohui Xue, Mingjiang Zhang, "Realizing submeter spatial resolution for Raman distributed fiber-optic sensing using a chaotic asymmetric paired-pulse correlation-enhanced scheme," Photonics Res. 12, 2365 (2024) Copy Citation Text show less
    References

    [1] A. Datta, H. Mamidala, D. Venkitesh. Reference-free real-time power line monitoring using distributed anti-Stokes Raman thermometry for smart power grids. IEEE Sens. J., 20, 7044-7052(2020).

    [2] C. J. Xin, M. Z. Guan. The sensitivity of distributed temperature sensor system based on Raman scattering under cooling down, loading and magnetic field. Cryogenics, 100, 36-40(2019).

    [3] J. Li, M. J. Zhang. Physics and applications of Raman distributed optical fiber sensing. Light Sci. Appl., 11, 128(2022).

    [4] L. C. B. Silva, M. E. V. Segatto, C. E. S. Castellani. Raman scattering-based distributed temperature sensors: a comprehensive literature review over the past 37 years and towards new avenues. Opt. Fiber Technol., 74, 103091(2022).

    [5] R. Tangudu, P. K. Sahu. Review on the developments and potential applications of the fiber optic distributed temperature sensing system. IETE Tech. Rev., 39, 553-567(2021).

    [6] G. Bolognini, A. Hartog. Raman-based fibre sensors: trends and applications. Opt. Fiber Technol., 19, 678-688(2013).

    [7] T. Yu, C. G. Ren, Y. B. Jia. Photovoltaic panel temperature monitoring and prediction by Raman distributed temperature sensor with fuzzy temperature difference threshold method. IEEE Sens. J., 21, 373-380(2021).

    [8] Y. Xu, J. Li, M. J. Zhang. Pipeline leak detection using Raman distributed fiber sensor with dynamic threshold identification method. IEEE Sens. J., 20, 7870-7877(2020).

    [9] Z. M. Zhou, J. Zhang, X. S. Huang. Trend of soil temperature during pipeline leakage of high-pressure natural gas: experimental and numerical study. Measurement, 153, 107440(2020).

    [10] Y. Tsutomu, F. Go, I. Toru. Optical sensors for the exploration of oil and GAS. J. Lightwave Technol., 35, 3538-3545(2017).

    [11] B. Apperl, A. Pressl, K. Schulz. Feasibility of locating leakages in sewage pressure pipes using the distributed temperature sensing technology. Water Air Soil Pollut., 228, 82-94(2017).

    [12] Z. S. Zhang, H. Wu, C. Zhao. High-performance Raman distributed temperature sensing powered by deep learning. J. Lightwave Technol., 39, 654-659(2021).

    [13] S. Qu, Z. G. Qin, Y. P. Xu. High spatial resolution investigation of OFDR based on image denoising methods. IEEE Sens. J., 21, 18871-18876(2021).

    [14] C. Du, C. L. Fu, P. F. Li. High-spatial-resolution strain sensor based on Rayleigh-scattering-enhanced SMF using direct UV exposure. J. Lightwave Technol., 41, 1566-1570(2023).

    [15] L. C. B. Silva, J. L. A. Samatelo, M. E. V. Segatto. NARX neural network model for strong resolution improvement in a distributed temperature sensor. Appl. Opt., 57, 5859-5864(2018).

    [16] A. Acharya, T. Kogure. Application of novel distributed fibre-optic sensing for slope deformation monitoring: a comprehensive review. Int. J. Environ. Sci. Technol., 20, 8217-8240(2023).

    [17] K. T. V. Grattan, T. Sun. Fiber optic sensor technology: an overview. Sens. Actuators A, 82, 40-61(2000).

    [18] J. Li, B. Q. Yan, M. J. Zhang. Long-range Raman distributed fiber temperature sensor with early warning model for fire detection and prevention. IEEE Sens. J., 19, 3711-3717(2019).

    [19] M. A. Soto, A. Signori, T. Nannipieri. Impact of loss variations on double-ended distributed temperature sensors based on Raman anti-Stokes signal only. J. Lightwave Technol., 30, 1215-1222(2011).

    [20] L. Zhang, X. Feng, W. Zhang. Improving spatial resolution in fiber Raman distributed temperature sensor by using deconvolution algorithm. Chine. Opt. Lett., 7, 560-563(2009).

    [21] Y. Z. Ososkov, A. O. Chernutsky, D. A. Dvoretskiy. Fiber optic Raman distributed temperature sensor based on an ultrashort pulse mode-locked fiber laser. Opt. Spectrosc., 127, 664-668(2019).

    [22] J. Gasser, D. Warpelin, F. Bussières. Distributed temperature sensor combining centimeter resolution with hundreds of meters sensing range. Opt. Express, 30, 6768-6777(2022).

    [23] X. Z. Sun, Z. S. Yang, X. B. Hong. Genetic-optimised aperiodic code for distributed optical fibre sensors. Nat. Commun., 11, 5774(2020).

    [24] M. Wang, M. Tang, H. Wu. Few-mode fiber-based Raman distributed temperature sensing. Opt. Express, 25, 4907-4916(2017).

    [25] Y. P. Liu, L. Ma, C. Yang. Long-range Raman distributed temperature sensor with high spatial and temperature resolution using graded-index few-mode fiber. Opt. Express, 26, 20562-20571(2018).

    [26] M. A. Soto, T. Nannipieri, A. Signorini. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding. Opt. Lett., 36, 2557-2559(2011).

    [27] J. Li, X. X. Zhou, Y. Xu. Slope-assisted Raman distributed optical fiber sensing. Photon. Res., 10, 205-213(2022).

    [28] J. P. Bazzo, D. R. Pipa, C. Martelli. Improving spatial resolution of Raman DTS using total variation deconvolution. IEEE Sens. J., 16, 4425-4430(2016).

    [29] L. Shen, Z. Zhao, C. Zhao. Improving the spatial resolution of a BOTDA sensor using deconvolution algorithm. J. Lightwave Technol., 39, 2215-2222(2021).

    [30] W. Wei, L. Shen, Z. Zhao. BOTDA sensing system based on differential Golay coding and deconvolution algorithm. J. Lightwave Technol., 41, 5475-5484(2023).

    [31] X. X. Zhou, J. Li, Y. Xu. Chaos Raman optical time-domain reflectometry for millimeter-level spatial resolution temperature sensing. J. Lightwave Technol., 39, 7529-7538(2021).

    [32] R. Chen, H. Shu, B. Shen. Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics, 17, 306-314(2023).

    [33] Y. C. Wang, B. J. Wang, A. B. Wang. Chaotic correlation optical time domain reflectometer utilizing laser diode. IEEE Photon. Technol. Lett., 20, 1636-1638(2008).

    [34] C. Y. Wang, J. Li, X. X. Zhou. Chaos Raman distributed optical fiber sensing. Light Sci. Appl., 12, 213(2023).

    [35] J. Li, C. Y. Wang, K. Y. Cao. Breakthrough the physical barrier on spatial resolution in Raman distributed fiber sensing using chaotic correlation demodulation. APL Photon., 8, 076105(2023).

    [36] J. Mork, B. Tromborg, J. Mark. Chaos in semiconductor lasers with optical feedback: theory and experiment. IEEE J. Quantum Electron., 28, 93-108(1992).

    [37] M. M. Chai, L. J. Qiao, X. J. Wei. Broadband chaos generation utilizing a wavelength-tunable monolithically integrated chaotic semiconductor laser subject to optical feedback. Opt. Express, 30, 44717-44725(2022).

    Bowen Fan, Jian Li, Zijia Cheng, Xiaohui Xue, Mingjiang Zhang, "Realizing submeter spatial resolution for Raman distributed fiber-optic sensing using a chaotic asymmetric paired-pulse correlation-enhanced scheme," Photonics Res. 12, 2365 (2024)
    Download Citation