• Spectroscopy and Spectral Analysis
  • Vol. 36, Issue 4, 1007 (2016)
LI Wen-hong1、2、3, CAO Jin-jin2, LU Rui2, CHE Cui-xia2, and WEI Yong-ju1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2016)04-1007-06 Cite this Article
    LI Wen-hong, CAO Jin-jin, LU Rui, CHE Cui-xia, WEI Yong-ju. Study on Fluorescence Properties of Flavanone and Its Hydroxyl Derivatives[J]. Spectroscopy and Spectral Analysis, 2016, 36(4): 1007 Copy Citation Text show less

    Abstract

    Flavanone derivatives are important active ingredients of natural medicine, so the synthesis of these compounds is one of the research hotspots of organic synthesis. Nevertheless, there is little research on fluorescence properties of these compounds up to now. Fluorescence properties of flavanone and 6 kinds of hydroxyl derivatives are studied in this paper. It is found that aqueous solutions of flavanone (FV), 7-hydroxyflavanone (7HF) and 6-hydroxyflavanone (6HF) have fluorescence, but aqueous solutions of 2’-hydroxyflavanone (2’HF), 4’-hydroxyflavanone (4’HF), naringenin and pinocembrin basically have no fluorescence. In three dimensional fluorescence spectra, excitation wavelengths λex of FV are located at 235, 265 and 340 nm, emission wavelength λem is at 386 nm; λex of 7HF are at 230, 276 and 315 nm, λem is at 391 nm; λex of 6HF are at 260 and 356 nm, em is at 482 nm. Influences of pH on fluorescence of FV, 7HF and 6HF are studied, and the reasons of pH affects on fluorescence are discussed from the viewpoint of molecular structure. The UV-absorption spectra of 7HF and 6HF at different pH are studied, and the proton ionization constants (pKa) of 7HF and 6HF are determined respectively to be 7.26±0.05 and 9.90±0.02, by a pH-absorption method. Influences of solvent (methanol) on fluorescence of FV, 7HF and 6HF are studied, and find that the fluorescence of FV and 7HF in methanol are weaker than that in water, but the fluorescence of 6HF in methanol is much stronger. In ordered media (SDS, CTAB and β-CD), fluorescence of FV and 7HF decreased than that in water, but the fluorescence of 6HF enhanced in the media of β-CD or CTAB. Using quinine sulfate or L-tryptophane as reference, fluorescence quantum yields of FV and 7HF aqueous solutions are measured to be 0.057 and 0.012, respectively; fluorescence quantum yields of 6HF in methanol or in aqueous solution containing 1.62 mg·mL-1 β-CD are measured to be 0.064 or 0.012, respectively.
    LI Wen-hong, CAO Jin-jin, LU Rui, CHE Cui-xia, WEI Yong-ju. Study on Fluorescence Properties of Flavanone and Its Hydroxyl Derivatives[J]. Spectroscopy and Spectral Analysis, 2016, 36(4): 1007
    Download Citation