• Chinese Journal of Lasers
  • Vol. 49, Issue 19, 1902001 (2022)
Xinxin Li1, Xing Li1, Yimeng Wang1, Yingchun Guan1、2、3、*, and Huaming Wang2
Author Affiliations
  • 1School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China
  • 2National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, Beijing 100083, China
  • 3International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100083, China
  • show less
    DOI: 10.3788/CJL202249.1902001 Cite this Article Set citation alerts
    Xinxin Li, Xing Li, Yimeng Wang, Yingchun Guan, Huaming Wang. Laser Precision Processing Lightens Intelligent Manufacturing[J]. Chinese Journal of Lasers, 2022, 49(19): 1902001 Copy Citation Text show less
    References

    [1] Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 5, e16133(2016).

    [2] Peng H M. Precision laser machining of aerospace parts[J]. Laser & Optoelectronics Progress, 23, 44(1986).

    [3] Li J, Zi J F, Yang X J et al. Application of femtosecond laser micro-machining technology in turbine blades of domestic aeroengine[J]. Electromachining & Mould, 54-58(2018).

    [4] Qin L, Huang Y Q, Xia F et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography[J]. Nano Letters, 20, 4916-4923(2020).

    [5] Li Q B. The 2nd Research Institute of China Electronics Technology Group Corporation (CETC) has made progress in silicon carbide laser stripping technology[N/OL]. China Science Daily. https://news.sciencenet.cn/htmlnews/2022/2/474723.shtm

    [6] Strano G, Hao L, Everson R M et al. Surface roughness analysis, modelling and prediction in selective laser melting[J]. Journal of Materials Processing Technology, 213, 589-597(2013).

    [7] Chen L, Richter B, Zhang X Z et al. Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing[J]. Additive Manufacturing, 32, 101013(2020).

    [8] Gora W S, Tian Y T, Cabo A P et al. Enhancing surface finish of additively manufactured titanium and cobalt chrome elements using laser based finishing[J]. Physics Procedia, 83, 258-263(2016).

    [9] Yasa E, Kruth J P. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 19, 389-395(2011).

    [10] Chen L Y, Liang S X, Liu Y J et al. Additive manufacturing of metallic lattice structures: unconstrained design, accurate fabrication, fascinated performances, and challenges[J]. Materials Science and Engineering: Reports, 146, 100648(2021).

    [11] Li Y G, Wu Y B, Zhou L B et al. Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher[J]. International Journal of Machine Tools and Manufacture, 77, 93-102(2014).

    [12] Tong X, Wu X J, Zhang F Y et al. Mechanism and parameter optimization in grinding and polishing of M300 steel by an elastic abrasive[J]. Materials, 12, 340(2019).

    [13] Wu R B, Wang M, Xu J et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 8, 910(2018).

    [14] Temmler A, Liu D, Preußner J et al. Influence of laser polishing on surface roughness and microstructural properties of the remelted surface boundary layer of tool steel H11[J]. Materials & Design, 192, 108689(2020).

    [15] Rosa B, Mognol P, Hascoët J Y. Modelling and optimization of laser polishing of additive laser manufacturing surfaces[J]. Rapid Prototyping Journal, 22, 956-964(2016).

    [16] Bhaduri D, Penchev P, Batal A et al. Laser polishing of 3D printed mesoscale components[J]. Applied Surface Science, 405, 29-46(2017).

    [17] Hofele M, Roth A, Schanz J et al. Laser polishing of additive manufactured aluminium parts by modulated laser power[J]. Micromachines, 12, 1332(2021).

    [18] Wang W J, Yung K C, Choy H S et al. Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys[J]. Applied Surface Science, 443, 167-175(2018).

    [19] Yao J H, Huang J B, Wang G H et al. Pulsed laser polishing mechanism on high roughness surface cut by wire electrical discharge machining[J]. Chinese Journal of Lasers, 48, 1402003(2021).

    [20] Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy[J]. Chinese Journal of Lasers, 47, 0102003(2020).

    [21] Gao H, Peng C, Wang X P. Research progress on surface finishing technology of aeronautical complex structural parts manufactured by additive manufacturing[J]. Aeronautical Manufacturing Technology, 62, 14-22(2019).

    [22] Chen X Y, Chen X X, Li Y et al. Research on polishing process of aluminum alloy curved surface by nanosecond laser beam coupling[J]. Proceedings of SPIE, 11907, 1190720(2021).

    [23] Xu Z F, Ouyang W T, Liu Y F et al. Effects of laser polishing on surface morphology and mechanical properties of additive manufactured TiAl components[J]. Journal of Manufacturing Processes, 65, 51-59(2021).

    [24] Li J J, Zuo D W. Laser polishing of additive manufactured Ti6Al4V alloy: a review[J]. Optical Engineering, 60, 020901(2021).

    [25] Sarkar S, Kumar C S, Nath A K. Effects of different surface modifications on the fatigue life of selective laser melted 15-5 PH stainless steel[J]. Materials Science and Engineering: A, 762, 138109(2019).

    [26] Li Y H, Zhang Z, Guan Y C. Thermodynamics analysis and rapid solidification of laser polished Inconel 718 by selective laser melting[J]. Applied Surface Science, 511, 145423(2020).

    [27] Li Y H, Cheng X, Guan Y C. Ultrafine microstructure development in laser polishing of selective laser melted Ti alloy[J]. Journal of Materials Science & Technology, 83, 1-6(2021).

    [28] Jiao J K, Jia S H, Xu Z F et al. Laser direct joining of CFRTP and aluminium alloy with a hybrid surface pre-treating method[J]. Composites Part B: Engineering, 173, 106911(2019).

    [29] Tan X H, Zhang J, Shan J G et al. Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel[J]. Composites Part B: Engineering, 70, 35-43(2015).

    [30] Zhang Z, Tan X H, Zhang J et al. Suppression of shrinkage porosity in laser-joining of CFRP and steel using a laser surface modification process “Surfi-Sculpt®”[J]. International Journal of Adhesion and Adhesives, 85, 184-192(2018).

    [31] Wang H P, Chen Y, Guo Z Y et al. Porosity elimination in modified direct laser joining of Ti6Al4V and thermoplastics composites[J]. Applied Sciences, 9, 411(2019).

    [32] Wang H P, Yan P, Guan Y C. Robust heterojunctions of metallic alloy and carbon fiber-reinforced composite induced by laser processing[J]. Materials, 14, 7469(2021).

    [33] Yang H, Zhang B, Zhang L P. Application and manufacture of microstructure function surface[J]. Aviation Precision Manufacturing Technology, 51(2015).

    [34] Qin Y[M]. Micromanufacturing engineering and technology(2010).

    [35] Wang C W. Research on femtosecond laser microfabrication for various materials and their applications[D], 20-28(2019).

    [36] Zhang C J, Bai X, Zhang J Z et al. Designing “supermetalphobic” surfaces that greatly repel liquid metal by femtosecond laser processing: does the surface chemistry or microstructure play a crucial role?[J]. Advanced Materials Interfaces, 7, 1901931(2020).

    [37] Bai S, Serien D, Hu A M et al. 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances[J]. Advanced Functional Materials, 28, 1706262(2018).

    [38] Chen Y Q, Gao B P, Lin Y Z et al. Metal wire grid terahertz polarizer fabricated by femtosecond laser micro-machining[J]. Chinese Journal of Lasers, 45, 0802005(2018).

    [39] Shen Y Z. Preparation and anti/de-icing mechanism of the superhydrophobic surface on Ti6Al4V[D](2016).

    [40] Jin M M, Shen Y Z, Luo X Y et al. A combination structure of microblock and nanohair fabricated by chemical etching for excellent water repellency and icephobicity[J]. Applied Surface Science, 455, 883-890(2018).

    [41] Luo X, Liu W J, Zhang H J et al. Ultrafast laser fabricating of controllable micro-nano dual-scale metallic surface structures and their functionalization[J]. Chinese Journal of Lasers, 48, 1502002(2021).

    [42] Alamri S, Vercillo V, Aguilar-Morales A I et al. Self-limited ice formation and efficient de-icing on superhydrophobic micro-structured airfoils through direct laser interference patterning[J]. Advanced Materials Interfaces, 7, 2001231(2020).

    [43] Milles S, Soldera M, Voisiat B et al. Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures[J]. Scientific Reports, 9, 13944(2019).

    [44] Gaddam A, Sharma H, Karkantonis T et al. Anti-icing properties of femtosecond laser-induced nano and multiscale topographies[J]. Applied Surface Science, 552, 149443(2021).

    [45] Wang L Z, Tian Z, Jiang G C et al. Spontaneous dewetting transitions of droplets during icing & melting cycle[J]. Nature Communications, 13, 378(2022).

    [46] Pan R, Zhang H J, Zhong M L. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces, 13, 1743-1753(2021).

    [47] Zhang J L, Qing Y, Cheng Y et al. Slippery liquid infused porous surface on metal material with excellent ice resistance fabricated by femtosecond Bessel laser[J]. Advanced Engineering Materials, 2101738(2022).

    [48] Ge C F, Yuan G, Guo C L et al. Femtosecond laser fabrication of square pillars integrated Siberian-Cocklebur-like microstructures surface for anti-icing[J]. Materials & Design, 204, 109689(2021).

    [49] Liu Y, Li X L, Jin J F et al. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model[J]. Applied Surface Science, 400, 498-505(2017).

    [50] Zhao M Y, Yang F, Zhang X L et al. Anti-icing performance of complex texture silicone rubber surface based on laser engraving[J]. Chinese Journal of Lasers, 49, 1002603(2022).

    [51] Wang H P, He M J, Liu H et al. One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability, thermal stability, and anti-icing function[J]. ACS Applied Materials & Interfaces, 11, 25586-25594(2019).

    [52] Li X. Research on femtosecond laser fabrication of micro/nano structure and its anti-reflection properties[D](2021).

    [53] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 117, 033103(2015).

    [54] Samanta A, Wang Q H, Singh G et al. Nanosecond pulsed laser processing turns engineering metal alloys antireflective and superwicking[J]. Journal of Manufacturing Processes, 54, 28-37(2020).

    [55] Wöbbeking K, Li M J, Hübner E G et al. Conical microstructuring of titanium by reactive gas assisted laser texturing[J]. RSC Advances, 9, 37598-37607(2019).

    [56] Zheng B X, Wang W J, Jiang G D et al. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination[J]. Applied Physics B, 122, 180(2016).

    [57] Fan P X, Bai B F, Zhong M L et al. General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance[J]. ACS Nano, 11, 7401-7408(2017).

    [58] Fan P X, Bai B F, Long J Y et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Letters, 15, 5988-5994(2015).

    [59] Fan P X, Wu H, Zhong M L et al. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion[J]. Nanoscale, 8, 14617-14624(2016).

    [60] Yang Y, Yang J J, Liang C Y et al. Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses[J]. Optics Express, 16, 11259-11265(2008).

    [61] Wang H P, Guan Y C, Zheng H Y et al. Controllable fabrication of metallic micro/nano hybrid structuring surface for antireflection by picosecond laser direct writing[J]. Applied Surface Science, 471, 347-354(2019).

    [62] Denkena B, Kästner J, Wang B. Advanced microstructures and its production through cutting and grinding[J]. CIRP Annals, 59, 67-72(2010).

    [63] Aljekhedab F, Zhang W B, Haugen H K et al. Influence of environmental conditions in bovine bone ablation by ultrafast laser[J]. Journal of Biophotonics, 12, e201800293(2019).

    [64] An R, Khadar G W, Wilk E et al. Ultrafast laser ablation and machining large-size structures on porcine bone[J]. Journal of Biomedical Optics, 18, 070504(2013).

    [65] Charlton A, Dickinson M R, King T A et al. Erbium-YAG and holmium-YAG laser ablation of bone[J]. Lasers in Medical Science, 5, 365-373(1990).

    [66] Kang H W, Oh J, Welch A J. Investigations on laser hard tissue ablation under various environments[J]. Physics in Medicine and Biology, 53, 3381-3390(2008).

    [67] Zhang J Z, Zhang X X. Effect factors of laser tissue ablation[J]. Chinese Journal of Lasers, 34, 300-304(2007).

    [68] Zhang X Z, Xie S S, Ye Q et al. Influence of scanning velocity on bovine shank bone ablation with pulsed CO2 laser[J]. Chinese Optics Letters, 7, 138-141(2009).

    [69] Zhang X Z, Zhan Z L, Liu H S et al. Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser[J]. Journal of Biomedical Optics, 17, 038003(2012).

    [70] Wieger V, Zoppel S, Wintner E. Ultrashort pulse laser osteotomy[J]. Laser Physics, 17, 438-442(2007).

    [71] Abbasi H, Rauter G, Guzman R et al. Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laserosteotomy[J]. Journal of Biomedical Optics, 23, 071206(2018).

    [72] Zhang J R, Guan K, Zhang Z et al. In vitro evaluation of ultrafast laser drilling large-size holes on sheepshank bone[J]. Optics Express, 28, 25528-25544(2020).

    [73] Benetti C, Santos M O, Rabelo J S et al. Detection of chemical changes in bone after irradiation with Er, Cr∶YSGG laser[J]. Proceedings of SPIE, 7883, 78834P(2011).

    [74] Halcrow S E, Rooney J, Beavan N et al. Assessing Raman spectroscopy as a prescreening tool for the selection of archaeological bone for stable isotopic analysis[J]. PLoS One, 9, e98462(2014).

    [75] Gok K, Buluc L, Muezzinoglu U S et al. Development of a new driller system to prevent the osteonecrosis in orthopedic surgery applications[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 549-558(2015).

    [76] Freeman S A, Grinstein S. Phagocytosis: how macrophages tune their non-professional counterparts[J]. Current Biology, 26, R1279-R1282(2016).

    [77] Song Y, Hu G Q, Zhang Z et al. Real-time spectral response guided smart femtosecond laser bone drilling[J]. Optics and Lasers in Engineering, 128, 106017(2020).

    [78] Kim B M, Feit M D, Rubenchik A M et al. Optical feedback signal for ultrashort laser pulse ablation of tissue[J]. Applied Surface Science, 127/128/129, 857-862(1998).

    [79] Choo K L, Ogawa Y, Kanbargi G et al. Micromachining of silicon by short-pulse laser ablation in air and under water[J]. Materials Science and Engineering: A, 372, 145-162(2004).

    [80] Conde J C, González P, Lusquiños F et al. Analysis of the formation and evolution of oriented microstructures on laser ablated silicon[J]. Applied Physics A, 95, 465-471(2009).

    [81] Gloor S, Lüthy W, Weber H P et al. UV laser polishing of thick diamond films for IR windows[J]. Applied Surface Science, 138/139, 135-139(1999).

    [82] Yan J W, Asami T, Kuriyagawa T. Response of machining-damaged single-crystalline silicon wafers to nanosecond pulsed laser irradiation[J]. Semiconductor Science and Technology, 22, 392-395(2007).

    [83] Yan J W, Muto S, Kuriyagawa T. Processing grinding-damaged silicon wafers by high-frequency nano-second laser irradiation[J]. Advanced Materials Research, 76/77/78, 451-456(2009).

    [84] Yan J W, Sakai S, Isogai H et al. Recovery of microstructure and surface topography of grinding-damaged silicon wafers by nanosecond-pulsed laser irradiation[J]. Semiconductor Science and Technology, 24, 105018(2009).

    [85] Niitsu K, Yan J W. Effects of deep subsurface damages on surface nanostructure formation in laser recovery of grinded single-crystal silicon wafers[J]. Precision Engineering, 62, 213-222(2020).

    [86] Ren Y M, Zhang Z Y. Surface of nanosecond laser polished single-crystal silicon improved by two-step laser irradiation[J]. Acta Optica Sinica, 42, 0714004(2022).

    [87] Fang Z H, Chen L F, Guan Y C et al. Picosecond laser micromachining of silicon wafer: characterizations and electrical properties[J]. Surface Review and Letters, 27, 1950142(2019).

    [88] Li X X, Wang Y M, Guan Y C. Laser grinding of single-crystal silicon wafer for surface finishing and electrical properties[J]. Micromachines, 12, 262(2021).

    [89] Li X X, Cui Z Q, Guan Y C. Surface modification of single-crystal silicon by hybrid laser treatment[J]. Proceedings of SPIE, 12154, 1215410(2022).

    Xinxin Li, Xing Li, Yimeng Wang, Yingchun Guan, Huaming Wang. Laser Precision Processing Lightens Intelligent Manufacturing[J]. Chinese Journal of Lasers, 2022, 49(19): 1902001
    Download Citation