• Advanced Photonics Nexus
  • Vol. 2, Issue 3, 036007 (2023)
Dunzhao Wei1、2、†, Pengcheng Chen1, Yipeng Zhang1, Wenzhe Yao1, Rui Ni1, Xiaopeng Hu1、3, Xinjie Lv1、3, Shining Zhu1、3, Min Xiao1、3、4, and Yong Zhang1、3、*
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, School of Physics, National Laboratory of Solid State Microstructures, Nanjing, China
  • 2Sun Yat-Sen University, School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, China
  • 3Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 4University of Arkansas, Department of Physics, Fayetteville, Arkansas, United States
  • show less
    DOI: 10.1117/1.APN.2.3.036007 Cite this Article Set citation alerts
    Dunzhao Wei, Pengcheng Chen, Yipeng Zhang, Wenzhe Yao, Rui Ni, Xiaopeng Hu, Xinjie Lv, Shining Zhu, Min Xiao, Yong Zhang. Generation of high-efficiency, high-purity, and broadband Laguerre-Gaussian modes from a Janus optical parametric oscillator[J]. Advanced Photonics Nexus, 2023, 2(3): 036007 Copy Citation Text show less
    References

    [1] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [3] Y. Yang et al. Optical trapping with structured light: a review. Adv. Photonics, 3, 034001(2021).

    [4] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [5] S. W. Hell. Far-field optical nanoscopy. Science, 316, 1153-1158(2007).

    [6] A. Mair et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [7] M. Erhard, M. Krenn, A. Zeilinger. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys., 2, 365-381(2020).

    [8] Q. Jia et al. Transferring linear motion of an optical wedge to rotational frequency shift in an orbital angular momentum interferometer. Appl. Phys. Lett., 111, 091102(2017).

    [9] V. D. Salakhutdinov, E. R. Eliel, W. Loffler. Full-field quantum correlations of spatially entangled photons. Phys. Rev. Lett., 108, 173604(2012).

    [10] M. Piccardo et al. Vortex laser arrays with topological charge control and self-healing of defects. Nat. Photonics, 16, 359(2022).

    [11] A. Forbes. Structured light from lasers. Laser Photonics Rev., 13, 1900140(2019).

    [12] H. Sroor et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 14, 498-503(2020).

    [13] J. Fan et al. Two-channel, dual-beam-mode, wavelength-tunable femtosecond optical parametric oscillator. Adv. Photonics, 2, 1(2020).

    [14] D. Naidoo et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics, 10, 327-332(2016).

    [15] Z. Zhang et al. Tunable topological charge vortex microlaser. Science, 368, 760-763(2020).

    [16] X. Cai et al. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [17] P. Miao et al. Orbital angular momentum microlaser. Science, 353, 464-467(2016).

    [18] M. P. J. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [19] B. Neupane, F. S. Ligler, G. Wang. Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. J. Biomed. Opt., 19, 080901(2014).

    [20] Y. Chen et al. Mapping twisted light into and out of a photonic chip. Phys. Rev. Lett., 121, 233602(2018).

    [21] L. Carbone et al. Generation of high-purity higher-order Laguerre-Gauss beams at high laser power. Phys. Rev. Lett., 110, 251101(2013).

    [22] A. Alexandrescu, D. Cojoc, E. Di Fabrizio. Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams. Phys. Rev. Lett., 96, 243001(2006).

    [23] A. E. Willner et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Phil. Trans. R. Soc. A, 375, 20150439(2017).

    [24] M. S. Kwon et al. Direct transfer of light’s orbital angular momentum onto a nonresonantly excited polariton superfluid. Phys. Rev. Lett., 122, 045302(2019).

    [25] N. Carlon Zambon et al. Optically controlling the emission chirality of microlasers. Nat. Photonics, 13, 283-288(2019).

    [26] N. E. Yu et al. Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped stoichiometric LiTaO3. Appl. Phys. Lett., 85, 5134-5136(2004). https://doi.org/10.1063/1.1828211

    [27] C. Canalias, V. Pasiskevicius. Mirrorless optical parametric oscillator. Nat. Photonics, 1, 459-462(2007).

    [28] F. Kienle et al. High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator. Opt. Express, 20, 7008-7014(2012).

    [29] A. Marandi et al. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photonics, 8, 937-942(2014).

    [30] R. W. Boyd. Nonlinear Optics(2008).

    [31] O. Gayer et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B, 91, 343-348(2008). https://doi.org/10.1007/s00340-008-2998-2

    [32] S. S. Oemrawsingh et al. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt., 43, 688-694(2004).

    [33] M. Rafayelyan, E. Brasselet. Spin-to-orbital angular momentum mapping of polychromatic light. Phys. Rev. Lett., 120, 213903(2018).

    [34] B. Y. Wei et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater., 26, 1590-1595(2014).

    [35] X. W. Wang et al. Recent advances on optical vortex generation. Nanophotonics, 7, 1533-1556(2018).

    [36] E. Karimi et al. Hypergeometric-Gaussian modes. Opt. Lett., 32, 3053-3055(2007).

    [37] B. Sephton, A. Dudley, A. Forbes. Revealing the radial modes in vortex beams. Appl. Opt., 55, 7830-7835(2016).

    [38] K. Miyamoto et al. Optical vortex pumped mid-infrared optical parametric oscillator. Opt. Express, 19, 12220-12226(2011).

    [39] A. Aadhi et al. Controlled switching of orbital angular momentum in an optical parametric oscillator. Optica, 4, 349(2017).

    [40] T. Omatsu, K. Miyamoto, A. J. Lee. Wavelength-versatile optical vortex lasers. J. Opt., 19, 123002(2017).

    [41] N. Zhou, J. Liu, J. Wang. Reconfigurable and tunable twisted light laser. Sci. Rep., 8, 11394(2018).

    [42] J. Zou et al. Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods. Nanoscale, 11, 15991-16000(2019).

    [43] C.-S. Yu, A. H. Kung. Grazing-incidence periodically poled LiNbO3 optical parametric oscillator. J. Opt. Soc. Am. B, 16, 2233-2238(1999). https://doi.org/10.1364/JOSAB.16.002233

    [44] M. Lazoul et al. Multi-resonant optical parametric oscillator based on 2D-PPLT nonlinear photonic crystal. Opt. Lett., 40, 1861-1864(2015).

    [45] U. Bäder et al. Nanosecond periodically poled lithium niobate optical parametric generator pumped at 532 nm by a single-frequency passively Q-switched Nd:YAG laser. Opt. Lett., 24, 1608-1610(1999).

    [46] H. C. Guo et al. Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO: LiNbO3. J. Appl. Phys., 101, 113112(2007). https://doi.org/10.1063/1.2743735

    [47] S. T. Yang, R. C. Eckardt, R. L. Byer. Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser. Opt. Lett., 18, 971-973(1993).

    [48] P. C. Chen et al. Self-consistent transverse modes in a geometric-phase-plate-assisted optical resonator. Phys. Rev. A, 105, 033525(2022).

    [49] D. Wei et al. Generating controllable Laguerre-Gaussian laser modes through intracavity spin-orbital angular momentum conversion of light. Phys. Rev. Appl., 11, 014038(2019).

    [50] Y. J. Cai, X. H. Lu, Q. Lin. Hollow Gaussian beams and their propagation properties. Opt. Lett., 28, 1084-1086(2003).

    [51] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [52] M. W. Beijersbergen et al. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun., 112, 321-327(1994).

    [53] K. Sueda et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express, 12, 3548-3553(2004).

    [54] L. E. Myers et al. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B, 12, 2102-2116(1995). https://doi.org/10.1364/JOSAB.12.002102

    [55] O. Svelto. Principles of Lasers(2010).

    [56] J. W. Goodman. Introduction to Fourier Optics(1996).

    [57] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [58] V. Arrizón et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 24, 3500-3507(2007).

    Dunzhao Wei, Pengcheng Chen, Yipeng Zhang, Wenzhe Yao, Rui Ni, Xiaopeng Hu, Xinjie Lv, Shining Zhu, Min Xiao, Yong Zhang. Generation of high-efficiency, high-purity, and broadband Laguerre-Gaussian modes from a Janus optical parametric oscillator[J]. Advanced Photonics Nexus, 2023, 2(3): 036007
    Download Citation