• Matter and Radiation at Extremes
  • Vol. 5, Issue 2, 28201 (2020)
Viktor Struzhkin1、*, Bing Li2, Cheng Ji2, Xiao-Jia Chen2, Vitali Prakapenka3, Eran Greenberg3, Ivan Troyan4, Alexander Gavriliuk5, and Ho-kwang Mao2
Author Affiliations
  • 1Center for High Pressure Science and Technology Advanced Research, Shanghai, China
  • 2Center for High Pressure Science and Technology Advanced Research, Shanghai, China
  • 3Center for Advanced Radiation Sources, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
  • 4Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 59 Leninskii Pr-t, Moscow 119333, Russia
  • 5Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 59 Leninskii Pr-t, Moscow 119333, Russia
  • show less
    DOI: 10.1063/1.5128736 Cite this Article
    Viktor Struzhkin, Bing Li, Cheng Ji, Xiao-Jia Chen, Vitali Prakapenka, Eran Greenberg, Ivan Troyan, Alexander Gavriliuk, Ho-kwang Mao. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory[J]. Matter and Radiation at Extremes, 2020, 5(2): 28201 Copy Citation Text show less
    References

    [1] N. W. Ashcroft. Metallic hydrogen: A high-temperature superconductor?. Phys. Rev. Lett., 21, 1748-1749(1968).

    [2] V. L. Ginzburg. Superfluidity and superconductivity in the universe. J. Stat. Phys., 1, 3-24(1969).

    [3] V. L. Ginzburg. Key Problems in Physics and Astrophysics(1978).

    [4] H. B. Huntington, E. Wigner. On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 3, 764-770(1935).

    [5] J. M. McMahon, D. M. Ceperley. Ground-state structures of atomic metallic hydrogen. Phys. Rev. Lett., 106, 165302(2011).

    [6] J. M. McMahon, D. M. Ceperley. High-temperature superconductivity in atomic metallic hydrogen. Phys. Rev. B, 84, 144515(2011).

    [7] L. N. Cooper, J. R. Schrieffer, J. Bardeen. Theory of superconductivity. Phys. Rev., 108, 1175-1204(1957).

    [8] I. F. Silvera, R. P. Dias. Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 355, 715(2017).

    [9] V. V. Struzhkin, A. F. Goncharov. Comment on observation of the Wigner-Huntington transition to metallic hydrogen. Science, 357, eaam9736(2017).

    [10] X. D. Liu et al. Comment on “Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 357, eaan2286(2017).

    [11] M. Eremets, A. P. Drozdov. Comments on the claimed observation of the Wigner-Huntington transition to metallic hydrogen(2017).

    [12] F. Occelli, P. Loubeyre, P. Dumas. Comment on: Observation of the Wigner-Huntington transition to metallic hydrogen(2017).

    [13] G. Alefeld, H. Wühl, B. Stritzker, J. Völkl. Superconductivity in metal-hydrogen systems. Hydrogen in Metals II, 243-272(1978).

    [14] J. J. Gilman. Lithium dihydrogen fluoride—An approach to metallic hydrogen. Phys. Rev. Lett., 26, 546-548(1971).

    [15] N. W. Ashcroft. Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 92, 187002(2004).

    [16] J. A. Flores-Livas et al. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials(2019).

    [17] J. Feng et al. Structures and potential superconductivity in SiH4 at high pressure: En route to “metallic hydrogen”. Phys. Rev. Lett., 96, 017006(2006).

    [18] Y. Li et al. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys., 140, 174712(2014).

    [19] A. P. Drozdov et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).

    [20] D. Duan et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 4, 6968(2014).

    [21] F. Peng et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett., 119, 107001(2017).

    [22] H. Liu et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. U. S. A., 114, 6990-6995(2017).

    [23] Y. Sun et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett., 123, 097001(2019).

    [24] M. Somayazulu, A. K. Mishra, Y. Meng, H. Liu, R. J. Hemley, M. Baldini, Z. M. Geballe, M. Ahart. Synthesis and stability of lanthanum superhydrides. Angew. Chem., Int. Ed., 57, 688-692(2018).

    [25] M. Somayazulu et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [26] A. P. Drozdov et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528-531(2019).

    [27] L. Zhang et al. Materials discovery at high pressures. Nat. Rev. Mater., 2, 17005(2017).

    [28] T. Bi, E. Zurek. High-temperature superconductivity in alkaline and rare earth polyhydrides at high pressure: A theoretical perspective. J. Chem. Phys., 150, 050901(2019).

    [29] V. V. Struzhkin. Superconductivity in compressed hydrogen-rich materials: Pressing on hydrogen. Physica C, 514, 77-85(2015).

    [30] H. Wang et al. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. U. S. A., 109, 6463-6466(2012).

    [31] I. Errea et al. Quantum crystal structure in the 250 K superconducting lanthanum hydride(2019).

    [32] A. P. Drozdov et al. Superconductivity at 215 K in lanthanum hydride at high pressures(2018).

    [33] M. Somayazulu et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures(2018).

    [34] A. P. Drozdov et al. Superconductivity at 250 K in lanthanum hydride under high pressures(2018).

    [35] Y. A. Timofeev et al. Improved techniques for measurement of superconductivity in diamond anvil cells by magnetic susceptibility. Rev. Sci. Instrum., 73, 371-377(2002).

    [36] Y. A. Timofeev. Detection of superconductivity in high-pressure diamond anvil cell by magnetic susceptibility technique. Prib. Tekh. Eksper., 5, 186-189(1992).

    [37] V. V. Struzhkin et al. Superconductivity at 10 to 17 K in compressed sulfur. Nature, 390, 382-384(1997).

    [38] V. V. Struzhkin, R. J. Hemley et al. New methods for investigating superconductivity at very high pressures. High Pressure Phenomena, 275-296(2002).

    [39] V. V. Struzhkin et al.

    [40] I. A. Kruglov et al. Superconductivity of LaH10 and LaH16: New twist of the story. Phys. Rev. B, 101, 024508(2020).

    [41] I. A. Troyan et al. Synthesis and superconductivity of yttrium hexahydride Im3¯m-YH6(2019). http://arxiv.org/abs/1908.01534

    [42] Y. Li et al. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep., 5, 9948(2015).

    [43] C. Heil et al. Superconductivity in sodalite-like yttrium hydride clathrates. Phys. Rev. B, 99, 220502(2019).

    [44] D. V. Semenok et al. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties. Mater. Today(2019).

    [45] A. G. Kvashnin et al. High-temperature superconductivity in a Th-H system under pressure conditions. ACS Appl. Mater. Interfaces, 10, 43809-43816(2018).

    [46] P. P. Kong et al. Superconductivity up to 243 K in yttrium hydrides under high pressure(2019).

    [47] D. V. Semenok et al. Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors. J. Phys. Chem. Lett., 9, 1920-1926(2018).

    [48] D. V. Semenok et al. On distribution of superconductivity in metal hydrydes(2018).

    [49] C. M. Pepin et al. Synthesis of FeH5: A layered structure with atomic hydrogen slabs. Science, 357, 382-385(2017).

    [50] P. Loubeyre et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature, 383, 702-704(1996).

    [51] N. P. Salke et al. Synthesis of clathrate cerium superhydride CeH9 below 100 GPa with atomic hydrogen sublattice. Nat. Commun., 10, 4453(2019).

    Viktor Struzhkin, Bing Li, Cheng Ji, Xiao-Jia Chen, Vitali Prakapenka, Eran Greenberg, Ivan Troyan, Alexander Gavriliuk, Ho-kwang Mao. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory[J]. Matter and Radiation at Extremes, 2020, 5(2): 28201
    Download Citation