• Frontiers of Optoelectronics
  • Vol. 4, Issue 1, 24 (2011)
Wei CHEN1、2 and Shihe YANG1、*
Author Affiliations
  • 1Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-011-0207-0 Cite this Article
    Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Frontiers of Optoelectronics, 2011, 4(1): 24 Copy Citation Text show less
    References

    [1] O’Regan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740

    [2] Nazeeruddin M K, Kay A, Rodicio I, Humphry-baker R, Muller E, Liska P, Vlachopoulos N, Gratzel M. Conversion of light to electricity by Cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ii) charge-transfer sensitizers (X = Cl -, Br- , I-, CN- , and SCN- ) on nanocrystalline TiO2 electrodes. Journal of the American Chemical Society, 1993, 115(14): 6382-6390

    [3] Martinson A B F, Hamann T W, Pellin M J, Hupp J T. New architectures for dye-senstized solar cells. Chemistry-A European Journal, 2008, 14(15): 4458-4467

    [4] Ku C H, Wu J J. Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Applied Physics Letters, 2007, 91(9): 093117

    [5] Feng X J, Shankar K, Varghese O K, Paulose M, Latempa T J, Grimes C A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Letters, 2008, 8(11): 3781-3786

    [6] Jiang C Y, Sun X W, Tan KW, Lo G Q, Kyaw A K K, Kwong D L. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters, 2008, 92(14): 143101

    [7] Chen W, Zhang H F, Hsing I M, Yang S H. A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcination. Electrochemistry Communications, 2009, 11(5): 1057-1060

    [8] Yoshida T, Zhang J B, Komatsu D, Sawatani S, Minoura H, Pauporte T, Lincot D, Oekermann T, Schlettwein D, Tada H,Wohrle D, Funabiki K, Matsui M, Miura H, Yanagi H. Electrodeposition of inorganic/organic hybrid thin films. Advanced Functional Materials, 2009, 19(1): 17-43

    [9] Qiu Y C, Chen W, Yang S H. Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20(5): 1001-1006

    [10] Chen W, Qiu Y C, Zhong Y C, Wong K S, Yang S H. High- Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanocles of SnO2 Nanoparticles/ZnO Nanotetrapods. Journal of Physical Chemistry A, 2010, 114(9): 3127-3138

    [11] Chen W, Qiu Y C, Yang S H. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12(32): 9494-9501

    [12] Qiu Y C, Chen W, Yang S H. Double-layered photoanodes from variable-size anatase TiO2 nanospindles: a candidate for highefficiency dye-sensitized solar cells. Angewandte Chemie International Edition, 2010, 49(21): 3675-3679

    [13] Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455-459

    [14] Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society, 2009, 131(11): 3985-3990

    [15] Zhu K, Neale N R, Miedaner A, Frank A J. Enhanced chargecollection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 2007, 7(1): 69-74

    [16] Yamaguchi T, Tobe N, Matsumoto D, Arakawa H. Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes. Chemical Communications, 2007, (45): 4767-4769

    [17] Chen C Y, Wang M K, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C H, Decoppet J D, Tsai J H, Gr tzel C, Wu C G, Zakeeruddin S M, Gr tzel M. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano, 2009, 3(10): 3103-3109

    [18] Dürr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G. Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nature Materials, 2005, 4(8): 607-611

    [19] Murakami T N, Kijitori Y, Kawashima N, Miyasaka T. UV lightassisted chemical vapor deposition of TiO2 for efficiency development at dye-sensitized mesoporous layers on plastic film electrodes. Chemistry Letters, 2003, 32(11): 1076-1077

    [20] Zhang D S, Yoshida T, Minoura H. Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(10): 814-817

    [21] Uchida S, Timiha M, Takizawa H, Kawaraya M.Flexible dyesensitized solar cells by 28 GHz microwave irradiation. Journal of Photochemistry and Photobiology a-Chemistry, 2004, 164(1-3): 93-96

    [22] Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z. ZnO Nanostructures for dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.), 2009, 21(41): 4087-4108

    [23] Liu X Z, Luo Y H, Li H, Fan Y Z, Yu Z X, Lin Y, Chen L Q, Meng Q B. Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells. Chemical Communications, 2007, (27): 2847-2849

    [24] Shi Y T, Zhan C, Wang L D, Ma B B, Gao R, Zhu Y F, Qiu Y. Polydisperse spindle-shaped ZnO particles with their packing micropores in the photoanode for highly efficient quasi-solid dyesensitized solar cells. Advanced Functional Materials, 2010, 20(3): 437-444

    [25] Zhang Q F, Dandeneau C S, Zhou X Y, Cao G Z. ZnO Nanostructures for dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.), 2009, 21(41): 4087-4108

    [26] Hsu Y F, Xi Y Y, Yip C T, Djurisic A B, ChanWK. Dye-sensitized solar cells using ZnO tetrapods. Journal of Applied Physics, 2008, 103(8): 083114

    [27] Qiu Y F, Yang S H. ZnO nanotetrapods: Controlled vapor-phase synthesis and application for humidity sensing. Advanced Functional Materials, 2007, 17(8): 1345-1352

    [28] ChiuWH, Lee C H, Cheng H M, Lin H F, Liao S C,Wu J M, Hsieh W F. Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells. Energy & Environmental Science, 2009, 2(6): 694-698

    [29] Bacsa R R, Dexpert-Ghys J, Verelst M, Falqui A, Machado B, Bacsa W S, Chen P, Zakeeruddin S M, Graetzel M, Serp P. Synthesis and structure-property correlation in shape-controlled ZnO nanoparticles prepared by chemical vapor synthesis and their application in dyesensitized solar cells. Advanced Functional Materials, 2009, 19(6): 875-886

    [30] Horiuchi H, Katoh R, Hara K, Yanagida M, Murata S, Arakawa H, Tachiya M. Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation. Journal of Physical Chemistry B, 2003, 107(11): 2570-2574

    [31] Keis K, Lindgren J, Lindquist S E, Hagfeldt A. Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir, 2000, 16(10): 4688-4694

    [32] Chou T P, Zhang Q F, Fryxell G E, Cao G Z. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Advanced Materials (Deerfield Beach, Fla.), 2007, 19(18): 2588-2592

    [33] Wang Q, Ito S, Gr tzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H. Characteristics of high efficiency dyesensitized solar cells. Journal of Physical Chemistry B, 2006, 110(50): 25210-25221

    [34] Wang Q, Moser J E, Gr tzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. Journal of Physical Chemistry B, 2005, 109(31): 14945-14953

    [35] Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells, 2005, 87(1-4): 117-131

    [36] Fabregat-Santiago F, Barea E M, Bisquert J, Mor G K, Shankar K, Grimes C A. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. Journal of the American Chemical Society, 2008, 130(34): 11312-11316

    [37] Wang Q, Zhang Z, Zakeeruddin S M, Gratzel M. Enhancement of the performance of dye-sensitized solar cell by formation of shallow transport levels under visible light illumination. Journal of Physical Chemistry C, 2008, 112(17): 7084-7092

    [38] Tan B, Wu Y Y. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. Journal of Physical Chemistry B, 2006, 110(32): 15932-15938

    [39] Thavasi V, Renugopalakrishnan V, Jose R, Ramakrishna S. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Materials Science and Engineering R Reports, 2009, 63(3): 81-99

    [40] Gan X Y, Li X M, Gao X D, Zhuge F W, Yu W D. ZnO nanowire/TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coating method. Thin Solid Films, 2010, 518(17): 4809-4812

    [41] Yodyingyong S, Zhang Q F, Park K, Dandeneau C S, Zhou X Y, Triampo D, Cao G Z. ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Applied Physics Letters, 2010, 96(7): 073115

    [42] Kumara G R R A, Tennakone K, Kottegoda I R M, Bandaranayake P K M, Konno A, Okuya M, Kaneko S, Murakami K. Efficient dyesensitize photoelectrochemical cells made from nanocrystalline tin(IV) oxide-zinc oxide composite films. Semiconductor Science and Technology, 2003, 18(4): 312-318

    [43] Niinobe D, Makari Y, Kitamura T, Wada Y, Yanagida S. Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells. Journal of Physical Chemistry B, 2005, 109(38): 17892-17900

    [44] Nozik A J, Memming R. Physical chemistry of semiconductorliquid interfaces. Journal of Physical Chemistry, 1996, 100(31): 13061-13078

    [45] Tan B, Toman E, Li Y G, Wu Y Y. Zinc stannate (Zn2SnO4) dyesensitized solar cells. Journal of the American Chemical Society, 2007, 129(14): 4162-4163

    [46] Hore S, Nitz P, Vetter C, Prahl C, Niggemann M, Kern R. Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells. Chemical Communications, 2005, (15): 2011-2013

    [47] Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 1998, 54(1-4): 265-275

    [48] Kay A, Gratzel M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chemistry of Materials, 2002, 14(7): 2930-2935

    [49] Ito S, Murakami T N, Comte P, Liska P, Gratzel C, Nazeeruddin M K, Gratzel M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516(14): 4613-4619

    [50] Jing B W, Zhang H, Zhang M H, Lu Z H, Shen T. Ruthenium(II) thiocyanate complexes containing 4 '-(4-phosphonatophenyl)-2,2 ':6 ',2 “-terpyridine: synthesis, photophysics and photosensitization to nanocrystalline TiO2 electrodes. Journal of Materials Chemistry, 1998, 8(9): 2055-2060

    [51] Tennakone K, Kumara G R R A, Kottegoda I R M, Perera V P S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications, 1999, (1): 15-16

    [52] Fukai Y, Kondo Y, Mori S, Suzuki E. Highly efficient dyesensitized SnO2 solar cells having sufficient electron diffusion length. Electrochemistry Communications, 2007, 9(7): 1439-1443

    [53] Koide N, Islam A, Chiba Y, Han L Y. Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. Journal of Photochemistry and Photobiology a-Chemistry, 2006, 182(3): 296-305

    [54] Wang Z S, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248(13-14): 1381-1389

    [55] Gr tzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chemistry Letters, 2005, 34(1): 8-13

    [56] Koops S E, Durrant J R. Transient emission studies of electron injection in dye sensitised solar cells. Inorganica Chimica Acta, 2008, 361(3): 663-670

    [57] Koops S E, O’Regan B C, Barnes P R F, Durrant J R. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. Journal of the American Chemical Society, 2009, 131(13): 4808-4818

    [58] Oekermann T, Zhang D, Yoshida T, Minoura H. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. Journal of Physical Chemistry B, 2004, 108(7): 2227-2235

    [59] Zhu K, Vinzant T B, Neale N R, Frank A J. Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Letters, 2007, 7(12): 3739-3746

    [60] Demir M M, Munoz-Espi R, Lieberwirth I, Wegner G. Precipitation of monodisperse ZnO nanocrystals via acid-catalyzed esterification of zinc acetate. Journal of Materials Chemistry, 2006, 16(28): 2940-2947

    [61] van de Lagemaat J, Frank A J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies. Journal of Physical Chemistry B, 2001, 105(45): 11194-11205

    [62] Colodrero S, Mihi A, Haggman L, Ocana M, Boschloo G, Hagfeldt A, Miguez H. Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.), 2009, 21(7): 764-770

    [63] Park N G, Kim K M, Kang M G, Ryu K S, Chang S H, Shin Y J. Chemical sintering of nanoparticles: A methodology for lowtemperature fabrication of dye-sensitized TiO2 films. Advanced Materials (Deerfield Beach, Fla.), 2005, 17(19): 2349-2353

    [64] Zhang D S, Yoshida T, Oekermann T, Furuta K, Minoura H. Roomtemperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Advanced Functional Materials, 2006, 16(9): 1228-1234

    [65] Toivola M, Halme J, Miettunen K, Aitola K, Lund P D. Nanostructured dye solar cells on flexible substrates-review. International Journal of Energy Research, 2009, 33(13): 1145-1160

    [66] Zhang Q F, Chou T P, Russo B, Jenekhe S A, Cao G Z. Aggregation of ZnO nanocrystallites for high conversion efficiency in dyesensitized solar cells. Angewandte Chemie International Edition, 2008, 47(13): 2402-2406

    [67] Han L Y, Koide N, Chiba Y, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters, 2004, 84(13): 2433-2435

    [68] Han L Y, Koide N, Chiba Y, Islam A, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus. Chimie, 2006, 9(5-6): 645-651

    [69] Chen H W, Hsu C Y, Chen J G, Lee K M, Wang C C, Huang K C, Ho K C. Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. Journal of Power Sources, 2010, 195(18): 6225-6231

    [70] Grinis L, Kotlyar S, Ruhle S, Grinblat J, Zaban A. Conformal nanosized inorganic coatings on mesoporous TiO2 films for lowtemperature dye-sensitized solar cell fabrication. Advanced Functional Materials, 2010, 20(2): 282-288

    Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Frontiers of Optoelectronics, 2011, 4(1): 24
    Download Citation