• Acta Photonica Sinica
  • Vol. 50, Issue 6, 144 (2021)
Xiaolei WANG1、2、3, Guangke JIANG1, Yuxin DONG1, Siliang LIU1, Liping GONG4、*, Jiehui ZHAO1, Zhuqing ZHU5, and Bing GU6、7
Author Affiliations
  • 1Institute of Modern Optics, School of Electronic Information and Optical Engineering, Nankai University, Tianjin300350, China
  • 2Tianjin Key Laboratory of Micro-scale Optical Information Technology Science, Tianjin300350, China
  • 3Tianjin Key Laboratory of Photoelectric Sensors and Sensor Network Technology,Tianjin0050, China
  • 4School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai201620, China
  • 5School of Computer and Electronic Information, Nanjing Normal University, Nanjing210023,China
  • 6Advanced Photonics Center, Southeast University, Nanjing21009, China
  • 7China Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan250358, China
  • show less
    DOI: 10.3788/gzxb20215006.0614002 Cite this Article
    Xiaolei WANG, Guangke JIANG, Yuxin DONG, Siliang LIU, Liping GONG, Jiehui ZHAO, Zhuqing ZHU, Bing GU. Study on Optical Force Characteristics of Triangular Metal Nanoparticles[J]. Acta Photonica Sinica, 2021, 50(6): 144 Copy Citation Text show less
    References

    [1] A ASHKIN. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal, 61, 569-582(1992).

    [2] A ASHKIN, J M DZIEDZIC, J E BJORKHOLM et al. Observation of a single-beamgradient force optical trap for dielectric particles. Optics Letters, 11, 288-290(1986).

    [3] K ONDA, F ARAI. Multi-beam bilateral teleoperation of holographic optical tweezers. Optics Express, 20, 3633-3641(2012).

    [4] K WANG, E SCHONBRUN, P STEINVURZEL et al. Trapping and rotating nanoparticles using plasmonic nano-tweezer with an integrated heat sink. Nature Communications, 2, 469(2011).

    [5] L DU, D Y LEI, G YUAN et al. Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering. Scientific Reports, 3, 3069(2013).

    [6] L DU, G YUAN, D TANG et al. Tightly focused radially polarized beam for propagating surface plasmon-assisted Gap-mode raman spectroscopy. Plasmonics, 6, 651-657(2011).

    [7] J SHEN, J WANG, C ZHANG et al. Dynamic plasmonic tweezers enabled single-particle-filmsystem Gap-mode Surface-enhanced Raman scattering. Applied Physics Letters, 103, 191119(2013).

    [8] R DORN, S QUABIS, G LEUCHS. Sharper focus for a radially polarized light beam. Physical Review Letters, 91, 233901(2003).

    [9] B J ROXWORTHY, A KUMAR et al. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Letters, 12, 796-801(2012).

    [10] K SVOBODA, S M BLOCK. Optical trapping of metallic Rayleigh particles. Optics Letters, 19, 930-932(1994).

    [11] G BRAUN, M DANTE et al. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. Journal of the American Chemical Society, 129, 6378-6379(2007).

    [12] S TAN, H A LOPEZ, C W CAI et al. Optical trapping of single-walled carbon nanotubes. Nano Letters, 4, 1415-1419(2004).

    [13] P J PAUZAUSKIE, A RADENOVIC, E TREPAGNIER et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Materials, 5, 97-101(2006).

    [14] J ZhANG, H KIM et al. Multidimensional manipulation of carbon nanotube bundles with optical tweezers. Applied Physics Letters, 88, 053123-053123-3(2006).

    [15] A HORST, A CAMPBELL, L V VUGT et al. Manipulating metal-oxide nanowires using counterpropagating optical line tweezers. Optics Express, 15, 11629-11639(2007).

    [16] J PLEWA, E TANNER, D MUETH et al. Processing carbon nanotubes with holographic optical tweezers. Optics Express, 12, 1978-1981(2004).

    [17] Y SEOL, A CARPENTER, T PERKINS. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Optics Letters, 31, 2429-2431(2006).

    [18] W ZHANG, L HUANG, C SANTSCHI et al. Trapping and sensing 10nm metal nanoparticles using plasmonic dipole antennas. Nano Letters, 10, 1006-1011(2010).

    [19] C MIN, Z SHEN, J SHEN et al. Focused plasmonic trapping of metallic particles. Nature Communications, 2891(2013).

    [20] S KAWATA, Y INOUYE, T SUGIURA. Near-field scanning optical microscope with a laser trapped probe. Japan Society of Applied Physics, 33, 1725-1727(1994).

    [21] M PELTON, M LIU, H Y KIM et al. Optical trapping and alignment of single gold nanorods by using plasmon resonances. Optics Letters, 31, 2075-2077(2006).

    [22] C CIRACÌ, R T HILL, J J MOCK et al. Probing the ultimate limits of plasmonic enhancement. Science, 337, 1072(2012).

    [23] Y KOZAWA, S SATLO. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Optics Express, 18, 10828(2010).

    [24] Q ZHAN. Trapping metallic Rayleigh particles with radial polarization: reply to comment. Optics Express, 20, 6058(2012).

    [25] X L WANG, B W ZHU, Y X DONG et al. Generation of equilateral-polygon-like flat-top focus by tightly focusing radially polarized beams superposed with off-axis vortex arrays. Optics Express, 25, 26844-26852(2017).

    [26] A AUBRY, D Y LEI, S A MAIER et al. Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. ACS Nano, 5, 3293-3308(2011).

    [27] L GONG, X. ZHANG, B GU et al. Optical pulling forces on Rayleigh particles using ambient optical nonlinearity. Nanophotonics, 8, 1117-1124(2019).

    Xiaolei WANG, Guangke JIANG, Yuxin DONG, Siliang LIU, Liping GONG, Jiehui ZHAO, Zhuqing ZHU, Bing GU. Study on Optical Force Characteristics of Triangular Metal Nanoparticles[J]. Acta Photonica Sinica, 2021, 50(6): 144
    Download Citation