• Chinese Journal of Lasers
  • Vol. 47, Issue 9, 906003 (2020)
Cao Minghua*, Wu Xin, Wang Huiqin, and Peng Qingbin
Author Affiliations
  • School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • show less
    DOI: 10.3788/CJL202047.0906003 Cite this Article Set citation alerts
    Cao Minghua, Wu Xin, Wang Huiqin, Peng Qingbin. Performance of Faster-than-Nyquist Optical Communication System under Gamma-Gamma Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2020, 47(9): 906003 Copy Citation Text show less

    Abstract

    The transmission rate of the existing atmospheric optical communication systems can be improved using the faster-than-Nyquist transmission technology; however, atmospheric turbulence will considerably affect the system performance. Therefore, in this study, expressions are derived for obtaining the average bit error rate and average capacity of the faster-than-Nyquist atmospheric optical communication systems under a Gamma-Gamma atmospheric turbulence channel. Further, the effects of the turbulence intensity, transmission distance, and acceleration constant on the system performance are discussed. The Monte-Carlo simulation results demonstrate that the average capacity of the system can be improved using the faster-than-Nyquist transmission technology. In addition, the increasing transmission distance and decreasing acceleration constant significantly affect the bit error rate and average capacity of the system. Under the weak turbulence channel condition, the average capacity of the system using the faster-than-Nyquist transmission technology is better than 31% of the system without this technology when the acceleration constant is 0.75 and the signal-to-noise ratio is 18 dB.
    Cao Minghua, Wu Xin, Wang Huiqin, Peng Qingbin. Performance of Faster-than-Nyquist Optical Communication System under Gamma-Gamma Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2020, 47(9): 906003
    Download Citation