• Photonics Research
  • Vol. 6, Issue 9, 837 (2018)
P. W. M. Tsang1、*, T.-C. Poon2, and Y. M. Wu1
Author Affiliations
  • 1Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China
  • 2Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
  • show less
    DOI: 10.1364/PRJ.6.000837 Cite this Article Set citation alerts
    P. W. M. Tsang, T.-C. Poon, Y. M. Wu. Review of fast methods for point-based computer-generated holography [Invited][J]. Photonics Research, 2018, 6(9): 837 Copy Citation Text show less
    References

    [1] P. Hariharan. Optical Holography: Principles, Techniques and Applications(1996).

    [2] J. P. Waters. Holographic image synthesis utilizing theoretical methods. Appl. Phys. Lett., 9, 405-407(1967).

    [3] B. R. Brown, A. W. Lohmann. Complex spatial filtering with binary mask. Appl. Opt., 5, 967-969(1966).

    [4] A. W. Lohmann, D. P. Paris. Binary Fraunhofer holograms, generated by computer. Appl. Opt., 6, 1739-1748(1967).

    [5] B. R. Brown, A. W. Lohmann. Computer-generated binary holograms. IBM J. Res. Dev., 13, 160-168(1969).

    [6] J. J. Burch. A computer algorithm for the synthesis of spatial frequency filters. Proc. IEEE, 55, 599-601(1967).

    [7] M. Bayraktar, M. Özcan. Method to calculate the far field of three-dimensional objects for computer-generated holography. Appl. Opt., 49, 4647-4654(2010).

    [8] J. Chen, D. Chu. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications. Opt. Express, 23, 18143-18155(2015).

    [9] H. Zhang, L. Cao, G. Jin. Computer-generated hologram with occlusion effect using layer-based processing. Appl. Opt., 56, F138-F143(2017).

    [10] Y. Pan, Y. Wang, J. Liu, X. Li, J. Jia. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display. Appl. Opt., 52, A290-A299(2013).

    [11] J. Park, S. Kim, H. Yeom, H. Kim, H. Zhang, B. Li, Y. Ji, S. Kim, S. Ko. Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram. Opt. Express, 23, 33893-33901(2015).

    [12] H. Nishi, K. Matsushima. Rendering of specular curved objects in polygon-based computer holography. Appl. Opt., 56, F37-F44(2017).

    [13] T.-C. Poon, J.-P. Liu. Introduction to Modern Digital Holography with MATLAB(2014).

    [14] T.-C. Poon. Optical Scanning Holography with MATLAB(2007).

    [15] H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, T. Ito. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration. Sci. Rep., 8, 1500(2018).

    [16] B. Jackin, S. Watanabe, K. Ootsu, T. Ohkawa, T. Yokota, Y. Hayasaki, T. Yatagai, T. Baba. Decomposition method for fast computation of gigapixel-sized Fresnel holograms on a graphics processing unit cluster. Appl. Opt., 57, 3134-3145(2018).

    [17] K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, T. Ito. Fast computation of computer-generated hologram using Xeon Phi coprocessor. Comput. Phys. Commun., 185, 2742-2757(2014).

    [18] M. Lucente. Interactive computation of holograms using a look-up table. J. Electron. Imaging, 2, 28-34(1993).

    [19] S. Kim, E. Kim. Effective generation of digital holograms of three-dimensional objects using a novel look-up table method. Appl. Opt., 47, D55-D62(2008).

    [20] S. Kim, J. Kim, E. Kim. Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram. Appl. Opt., 50, 3375-3382(2011).

    [21] S. Kim, E. Kim. Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods. Appl. Opt., 48, 1030-1041(2009).

    [22] S. Kim, X. Dong, M. Kwon, E. Kim. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table. Opt. Express, 21, 11568-11584(2013).

    [23] X. Dong, S. Kim, E. Kim. MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects. Opt. Express, 22, 8047-8067(2014).

    [24] Z. Yang, Q. Fan, Y. Zhang, J. Liu, J. Zhou. A new method for producing computer generated holograms. J. Opt., 14, 095702(2012).

    [25] J. Bresenham. A linear algorithm for incremental digital display of circular arcs. Commun. ACM, 20, 100-106(1977).

    [26] T. Nishitsuji, T. Shimobaba, T. Kakue, N. Masuda, T. Ito. Fast calculation of computer-generated hologram using the circular symmetry of zone plates. Opt. Express, 20, 27496-27502(2012).

    [27] S. Jiao, Z. Zhuang, W. Zou. Fast computer generated hologram calculation with a mini look-up table incorporated with radial symmetric interpolation. Opt. Express, 25, 112-123(2017).

    [28] Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, T. Chong. Fast CGH computation using S-LUT on GPU. Opt. Express, 17, 18543-18555(2009).

    [29] J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, W. Jiang. Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display. Appl. Opt., 52, 1404-1412(2013).

    [30] H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, T. Ito. Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels. Appl. Opt., 49, 5993-5996(2010).

    [31] C. Gao, J. Liu, X. Li, G. Xue, J. Jia, Y. Wang. Accurate compressed look up table method for CGH in 3D holographic display. Opt. Express, 23, 33194-33204(2015).

    [32] H. Yoshikawa, T. Yamaguchi, R. Kitayama. Real-time generation of full color image hologram with compact distance look-up table. OSA Topical Meeting on Digital Holography and Three-Dimensional Imaging, DWC4(2009).

    [33] T. Shimobaba, N. Masuda, T. Ito. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. Opt. Lett., 34, 3133-3135(2009).

    [34] T. Shimobaba, H. Nakayama, N. Masuda, T. Ito. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display. Opt. Express, 18, 19504-19509(2010).

    [35] T. Shimobaba, T. Ito. Fast generation of computer-generated holograms using wavelet shrinkage. Opt. Express, 25, 77-87(2017).

    [36] D. Arai, T. Shimobaba, T. Nishitsuji, T. Kakue, N. Masuda, T. Ito. An accelerated hologram calculation using the wavefront recording plane method and wavelet transform. Opt. Commun., 393, 107-112(2017).

    [37] N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, T. Kakue, T. Ito. Fast calculation of a computer-generated hologram for RGB and depth images using a wavefront recording plane method. Photon. Lett. Poland, 6, 90-92(2014).

    [38] J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, T. Ito. Generation of real-time large computer generated hologram using wavefront recording method. Opt. Express, 20, 4018-4023(2012).

    [39] A. Phan, M. Piao, S. Gil, N. Kim. Generation speed and reconstructed image quality enhancement of a long-depth object using double wavefront recording planes and a GPU. Appl. Opt., 53, 4817-4824(2014).

    [40] A.-H. Phan, M. A. Alam, S.-H. Jeon, J.-H. Lee, N. Kim. Fast hologram generation of long-depth object using multiple wavefront recording planes. Proc. SPIE, 9006, 900612(2014).

    [41] A. Symeonidou, D. Blinder, A. Munteanu, P. Schelkens. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling. Opt. Express, 23, 22149-22161(2015).

    [42] N. Hasegawa, T. Shimobaba, T. Kakue, T. Ito. Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes. Appl. Opt., 56, A97-A103(2017).

    [43] D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, T. Ito. Acceleration of computer-generated holograms using tilted wavefront recording plane method. Opt. Express, 23, 1740-1747(2015).

    [44] P. W. M. Tsang, T.-C. Poon. Review on theory and applications of wavefront recording plane framework in generation and processing of digital holograms. Chin. Opt. Lett., 11, 010902(2013).

    [45] P. W. M. Tsang, K. Cheung, T.-C. Poon. Real-time relighting of digital holograms based on wavefront recording plane method. Opt. Express, 20, 5962-5967(2012).

    [46] P. W. M. Tsang, T.-C. Poon, K. Cheung. Enhancing the pictorial content of digital holograms at 100 frames per second. Opt. Express, 20, 14183-14188(2012).

    [47] P. W. M. Tsang, W. Cheung, T.-C. Poon, C. Zhou. Holographic video at 40 frames per second for 4-million object points. Opt. Express, 19, 15205-15211(2011).

    [48] H. Yoshikawa, T.-C. Poon. Digital Holography and Three Dimensional Display: Principles and Applications(2006).

    [49] P. W. M. Tsang, J.-P. Liu, K. W. K. Cheung, T.-C. Poon. Fast generation of Fresnel holograms based on multirate filtering. Appl. Opt., 48, H23-H30(2009).

    [50] P. W. M. Tsang, J.-P. Liu, T.-C. Poon, K. W. K. Cheung. Fast generation of hologram sublines based on field programmable gate array. Holography and Three-Dimensional Imaging, Dwc2(2009).

    [51] P. W. M. Tsang, J.-P. Liu, K. W. K. Cheung, T.-C. Poon. An enhanced method for fast generation of hologram sub-lines. Chin. Opt. Lett., 7, 1092-1096(2009).

    [52] P. W. M. Tsang, K. W. K. Cheung, T.-C. Poon. Near computation-free compression of Fresnel holograms based on adaptive delta modulation. Opt. Eng., 50, 085802(2011).

    [53] P. W. M. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, T.-C. Poon. Low-complexity compression of holograms based on delta modulation. Opt. Commun., 284, 2113-2117(2011).

    [54] P. W. M. Tsang, K. W. K. Cheung, T.-C. Poon. Fast numerical generation and hybrid encryption of a computer-generated Fresnel holographic video sequence. Chin. Opt. Lett., 11, 020901(2013).

    [55] P. W. M. Tsang, W. C. Situ, W. K. Cheung, T.-C. Poon, C. Zhou. Fast generation of hologram from range camera images based on the sub-lines and holographic interpolation. Proc. SPIE, 8556, 85560R(2012).

    CLP Journals

    [1] P. W. M. Tsang, T.-C. Poon, W. Wang, X. Zhu, K. Chan. Integrating multiple images in a sampled phase-only hologram[J]. Chinese Optics Letters, 2019, 17(5): 050901

    [2] Xin Zhao, Xinzhu Sang, Hui Li, Duo Chen, Yuanhang Li, Cheng Peng, Binbin Yan. Holographic visualization of volume data based on adjustable ray to optical-wave conversion[J]. Chinese Optics Letters, 2022, 20(1): 010501

    P. W. M. Tsang, T.-C. Poon, Y. M. Wu. Review of fast methods for point-based computer-generated holography [Invited][J]. Photonics Research, 2018, 6(9): 837
    Download Citation