• Nano-Micro Letters
  • Vol. 16, Issue 1, 134 (2024)
Yu-Ying Shi1、2、†, Si-Yuan Liao1、†, Qiao-Feng Wang1, Xin-Yun Xu1, Xiao-Yun Wang1, Xin-Yin Gu1, You-Gen Hu1、*, Peng-Li Zhu1, Rong Sun1, and Yan-Jun Wan1、3、**
Author Affiliations
  • 1Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People’s Republic of China
  • 2Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
  • 3National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01344-1 Cite this Article
    Yu-Ying Shi, Si-Yuan Liao, Qiao-Feng Wang, Xin-Yun Xu, Xiao-Yun Wang, Xin-Yin Gu, You-Gen Hu, Peng-Li Zhu, Rong Sun, Yan-Jun Wan. Enhancing the Interaction of Carbon Nanotubes by Metal–Organic Decomposition with Improved Mechanical Strength and Ultra-Broadband EMI Shielding Performance[J]. Nano-Micro Letters, 2024, 16(1): 134 Copy Citation Text show less
    References

    [1] Z. Zhang, Z. Xiong, Y. Yao, D. Wang, Z. Yang et al., Constructing conductive network in hybrid perovskite for a highly efficient microwave absorption system. Adv. Funct. Mater. 32, 2206053 (2022).

    [2] F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15, 106 (2023).

    [3] Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16, 15042–15052 (2022).

    [4] B. Li, N. Wu, Q. Wu, Y. Yang, F. Pan et al., From “100%” utilization of MAX/MXene to direct engineering of wearable, multifunctional E-textiles in extreme environments. Adv. Funct. Mater. 33, 2307301 (2023).

    [5] S.-Y. Liao, X.-Y. Wang, X.-M. Li, Y.-J. Wan, T. Zhao et al., Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding. Chem. Eng. J. 422, 129962 (2021).

    [6] G.-M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28, 1803360 (2018).

    [7] B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33, 2213357 (2023).

    [8] Z.-H. Zeng, N. Wu, J.-J. Wei, Y.-F. Yang, T.-T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano Micro Lett. 14, 59 (2022).

    [9] Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nanomicro Lett. 14, 179 (2022).

    [10] Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32, e1907411 (2020).

    [11] Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017).

    [12] H. Wang, X. Sun, Y. Wang, K. Li, J. Wang et al., Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity. Nat. Commun. 14, 380 (2023).

    [13] Y.-J. Wan, X.-Y. Wang, X.-M. Li, S.-Y. Liao, Z.-Q. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14, 14134–14145 (2020).

    [14] A. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, K. Koziol, Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 24, 3661–3682 (2014).

    [15] S. Badaire, V. Pichot, C. Zakri, P. Poulin, P. Launois et al., Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes. J. Appl. Phys. 96, 7509–7513 (2004).

    [16] S. Zhang, J.G. Park, N. Nguyen, C. Jolowsky, A. Hao et al., Ultra-high conductivity and metallic conduction mechanism of scale-up continuous carbon nanotube sheets by mechanical stretching and stable chemical doping. Carbon 125, 649–658 (2017).

    [17] B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin et al., Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16, 19293–19304 (2022).

    [18] Y. Bai, R. Zhang, X. Ye, Z. Zhu, H. Xie et al., Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 13, 589–595 (2018).

    [19] L. Qiu, H. Zou, X. Wang, Y. Feng, X. Zhang et al., Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon 141, 497–505 (2019).

    [20] G. Wang, C. Sun, Y. Cai, Y. Ma, J. Ali Syed et al., Improvement of interface and electrical properties in carbon nanotube/nanocrystalline copper composite films. Mater. Chem. Phys. 223, 374–379 (2019).

    [21] G. Xu, J. Zhao, S. Li, X. Zhang, Z. Yong et al., Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Nanoscale 3, 4215–4219 (2011).

    [22] B. Wu, J. Zhang, Z. Wei, S. Cai, Z. Liu, Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface. J. Phys. Chem. B 105, 5075–5078 (2001).

    [23] Y. Choi, K.-D. Seong, Y. Piao, Metal–organic decomposition ink for printed electronics. Adv. Mater. Interfaces 6, 1901002 (2019).

    [24] A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).

    [25] Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023).

    [26] A. Felten, C. Bittencourt, J.-F. Colomer, G. Van Tendeloo, J.-J. Pireaux, Nucleation of metal clusters on plasma treated multi wall carbon nanotubes. Carbon 45, 110–116 (2007).

    [27] N. Wang, S. Pandit, L. Ye, M. Edwards, V.R.S.S. Mokkapati et al., Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures. Carbon 111, 402–410 (2017).

    [28] V. Gopee, O. Thomas, C. Hunt, V. Stolojan, J. Allam et al., Carbon nanotube interconnects realized through functionalization and sintered silver attachment. ACS Appl. Mater. Interfaces 8, 5563–5570 (2016).

    [29] C. Bittencourt, C. Navio, A. Nicolay, B. Ruelle, T. Godfroid et al., Atomic oxygen functionalization of vertically aligned carbon nanotubes. J. Phys. Chem. C 115, 20412–20418 (2011).

    [30] Y. Dong, X. Li, S. Liu, Q. Zhu, M. Zhang et al., Optimizing formulations of silver organic decomposition ink for producing highly-conductive features on flexible substrates: the case study of amines. Thin Solid Films 616, 635–642 (2016).

    [31] J. Gao, X. Wu, Q. Li, S. Du, F. Huang et al., Template-free growth of well-ordered silver nano forest/ceramic metamaterial films with tunable optical responses. Adv. Mater. 29, 1605324 (2017).

    [32] X. Bai, S. Liao, Y. Huang, J. Song, Z. Liu et al., Continuous draw spinning of extra-long silver submicron fibers with micrometer patterning capability. Nano Lett. 17, 1883–1891 (2017).

    [33] J. Lee, D.M. Lee, Y. Jung, J. Park, H.S. Lee et al., Direct spinning and densification method for high-performance carbon nanotube fibers. Nat. Commun. 10, 2962 (2019).

    [34] N. Behabtu, M.J. Green, C.L. Pint, C.C. Young et al., Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes. ACS Nano 4, 3969–3978 (2010).

    [35] J.W. Dear, C.G. Poll, K.T. Lai, M. Shkunov, Solution-processable transparent conducting films by defunctionalization of amine functionalized carbon nanotubes. J. Photonics Energy 8, 032221 (2018).

    [36] T. Zhou, Y. Niu, Z. Li, H. Li, Z. Yong et al., The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers. Mater. Des. 203, 109557 (2021).

    [37] Y.L. Chen, B. Liu, X.Q. He, Y. Huang, K.C. Hwang, Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Compos. Sci. Technol. 70, 1360–1367 (2010).

    [38] S.B. Cronin, A.K. Swan, M.S. Ünlü, B.B. Goldberg, M.S. Dresselhaus et al., Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 72, 035425 (2005).

    [39] N. Kalashnyk, E. Faulques, J. Schjødt-Thomsen, L.R. Jensen, J.C.M. Rauhe et al., Strain sensing in single carbon fiber epoxy composites by simultaneous in situ Raman and piezoresistance measurements. Carbon 109, 124–130 (2016).

    [40] Q. Li, Y.-L. Kang, W. Qiu, Y.-L. Li, G.-Y. Huang et al., Deformation mechanisms of carbon nanotube fibres under tensile loading by in situ Raman spectroscopy analysis. Nanotechnology 22, 225704 (2011).

    [41] J.C. Fernández-Toribio, A. Mikhalchan, C. Santos, Á. Ridruejo, J.J. Vilatela, Understanding cooperative loading in carbon nanotube fibres through in situ structural studies during stretching. Carbon 156, 430–437 (2020).

    [42] Z.P. Wu, M.M. Li, Y.Y. Hu, Y.S. Li, Z.X. Wang et al., Electromagnetic interference shielding of carbon nanotube macrofilms. Scr. Mater. 64, 809–812 (2011).

    [43] M. Panahi-Sarmad, S. Samsami, A. Ghaffarkhah, S.A. Hashemi, S. Ghasemi et al., MOF-based electromagnetic shields multiscale design: nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. (2023).

    [44] H. Chen, Y. Wen, Y. Qi, Q. Zhao, L. Qu et al., Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 1906996 (2020).

    [45] Y.-J. Wan, X.-M. Li, P.-L. Zhu, R. Sun, C.-P. Wong et al., Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 130, 105764 (2020).

    [46] X.-Y. Wang, S.-Y. Liao, H.-P. Huang, Q.-F. Wang, Y.-Y. Shi et al., Enhancing the chemical stability of MXene through synergy of hydrogen bond and coordination bond in aqueous solution. Small Methods 7, e2201694 (2023).

    [47] H. Jia, X. Yang, Q.-Q. Kong, L.-J. Xie, Q.-G. Guo et al., Free-standing, anti-corrosion, super flexible graphene oxide/silver nanowire thin films for ultra-wideband electromagnetic interference shielding. J. Mater. Chem. A 9, 1180–1191 (2021).

    [48] Z. Ma, H. Feng, Y. Feng, X. Ding, X. Wang et al., An ultralight and thermally conductive Ti3C2TxMXene–silver nanowire cellular composite film for high-performance electromagnetic interference shielding. J. Mater. Chem. C 10, 14169–14179 (2022).

    [49] X. Zhang, X.-L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal–organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17, 12510–12518 (2023).

    [50] R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021).

    [51] R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304–331 (2021).

    [52] Y. Sun, X. Han, P. Guo, Z. Chai, J. Yue et al., Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 17, 12616–12628 (2023).

    [53] N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan et al., Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35, e2207969 (2023).

    [54] H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho et al., Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84, 589–591 (2004).

    [55] N. Masuda, N. Tamaki, T. Kuriyama, J.C. Bu, M. Yamaguchi et al., High frequency magnetic near field measurement on LSI chip using planar multi-layer shielded loop coil, in 2003 IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.03CH37446) (IEEE, Boston, 2003), pp. 80–85

    [56] H.-N. Lin, C.-H. Wu, J.-F. Huang, W.-D. Tseng, J.Y.-T. Lin et al., Near-and far-field shielding effectiveness analysis of magnetic materials and their effect on wireless power charger, in 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC) (IEEE, Suntec City, 2018), pp. 1071–1076

    [57] D. Baudry, C. Arcambal, A. Louis, B. Mazari, P. Eudeline, Applications of the near-field techniques in EMC investigations. IEEE Trans. Electromagn. Compat. 49, 485–493 (2007).

    Yu-Ying Shi, Si-Yuan Liao, Qiao-Feng Wang, Xin-Yun Xu, Xiao-Yun Wang, Xin-Yin Gu, You-Gen Hu, Peng-Li Zhu, Rong Sun, Yan-Jun Wan. Enhancing the Interaction of Carbon Nanotubes by Metal–Organic Decomposition with Improved Mechanical Strength and Ultra-Broadband EMI Shielding Performance[J]. Nano-Micro Letters, 2024, 16(1): 134
    Download Citation