[1] Hahn V, Kiefer P, Frenzel T et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials[J]. Advanced Functional Materials, 30, 1907795(2020).
[2] Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 5, e16133(2016).
[3] Lin W, Chen D H, Chen S. Emerging micro-additive manufacturing technologies enabled by novel optical methods[J]. Photonics Research, 8, 1827-1842(2020).
[4] Frenzel T, Kadic M, Wegener M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 358, 1072-1074(2017).
[5] Aristov A I, Manousidaki M, Danilov A et al. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing[J]. Scientific Reports, 6, 25380(2016).
[6] Maigyte L, Purlys V, Trull J et al. Flat lensing in the visible frequency range by woodpile photonic crystals[J]. Optics Letters, 38, 2376-2378(2013).
[7] Wu D, Wu S Z, Xu J et al. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip[J]. Laser & Photonics Reviews, 8, 458-467(2014).
[8] Liberale C, Cojoc G, Bragheri F et al. Integrated microfluidic device for single-cell trapping and spectroscopy[J]. Scientific Reports, 3, 1258(2013).
[9] Gissibl T, Thiele S, Herkommer A et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 10, 554-560(2016).
[10] Dietrich P I, Blaicher M, Reuter I et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration[J]. Nature Photonics, 12, 241-247(2018).
[11] MaAčiulaitis J, Deveikytė M, Rekštytė S et al. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography[J]. Biofabrication, 7, 015015(2015).
[12] Richter B, Hahn V, Bertels S et al. Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins[J]. Advanced Materials, 29, 1604342(2017).
[13] Yang L, El-Tamer A, Hinze U et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator[J]. Optics and Lasers in Engineering, 70, 26-32(2015).
[14] Yan W S, Cumming B P, Gu M. High-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processing[J]. Journal of Optics, 17, 075803(2015).
[15] Vizsnyiczai G, Kelemen L, Ormos P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms[J]. Optics Express, 22, 24217-24223(2014).
[16] Gittard S D, Nguyen A, Obata K et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomedical Optics Express, 2, 3167-3178(2011).
[17] Obata K, Koch J, Hinze U et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation[J]. Optics Express, 18, 17193-17200(2010).
[18] Chu W, Tan Y X, Wang P et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization[J]. Advanced Materials Technologies, 3, 1700396(2018).
[19] Ovsianikov A, Deiwick A, van Vlierberghe S et al. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering[J]. Biomacromolecules, 12, 851-858(2011).
[20] Haske W, Chen V W, Hales J M et al. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography[J]. Optics Express, 15, 3426-3436(2007).
[21] Straub M, Gu M. Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization[J]. Optics Letters, 27, 1824-1826(2002).
[22] Skylar-Scott M A, Liu M C, Wu Y L et al. Guided homing of cells in multi-photon microfabricated bioscaffolds[J]. Advanced Healthcare Materials, 5, 1233-1243(2016).
[23] Bückmann T, Thiel M, Kadic M et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J]. Nature Communications, 5, 4130(2014).
[24] Obata K, El-Tamer A, Koch L et al. High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP)[J]. Light: Science & Applications, 2, e116(2013).
[25] Gottmann J. High speed and high precision fs-laser writing using a scanner with large numerical aperture[J]. Journal of Laser Micro, 4, 192-196(2009).
[26] Farsari M, Filippidis G, Sambani K et al. Two-photon polymerization of an eosin Y-sensitized acrylate composite[J]. Journal of Photochemistry and Photobiology A: Chemistry, 181, 132-135(2006).
[27] Pearre B W, Michas C, Tsang J M et al. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope[J]. Additive Manufacturing, 30, 100887(2019).
[28] di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 15, 1913-1922(2007).
[29] Lin H, Jia B H, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication[J]. Optics Letters, 36, 406-408(2011).
[30] Kim D U, Song H, Song W et al. Two-photon microscopy using an Yb3+-doped fiber laser with variable pulse widths[J]. Optics Express, 20, 12341-12349(2012).
[31] Kumi G, Yanez C O, Belfield K D et al. High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios[J]. Lab on a Chip, 10, 1057-1060(2010).
[32] Geng Q, Wang D E, Chen P F et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization[J]. Nature Communications, 10, 2179(2019).
[33] Dong X Z, Zhao Z S, Duan X M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing[J]. Applied Physics Letters, 91, 124103(2007).
[34] Zhou G Z, He M F, Yang Z Y et al. Dual-beam laser direct writing nano-lithography system based on peripheral photoinhibition technology[J]. Chinese Journal of Lasers, 49, 0202001(2022).