[7] ZHENG Y T, LI C M, LIU J L, et al. Diamond with nitrogen: states, control, and applications[J]. Functional Diamond, 2021, 1(1): 63-82.
[9] ROBLEDO L, CHILDRESS L, BERNIEN H, et al. High-fidelity projective read-out of a solid-state spin quantum register[J]. Nature, 2011, 477(7366): 574-578.
[11] SIPAHIGIL A, EVANS R E, SUKACHEV D D, et al. An integrated diamond nanophotonics platform for quantum-optical networks[J]. Science, 2016, 354(6314): 847-850.
[12] BRADAC C, GAO W B, FORNERIS J, et al. Quantum nanophotonics with group IV defects in diamond[J]. Nature Communications, 2019, 10: 5625.
[13] ZHENG Y T, LI C M, LIU J L, et al. Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics[J]. Frontiers of Materials Science, 2022, 16(1): 1-38.
[14] MANSON N B, HARRISON J P. Photo-ionization of the nitrogen-vacancy center in diamond[J]. Diamond & Related Materials, 2005, 14(10): 1705-1710.
[15] COLLINS A T. The Fermi level in diamond[J]. Journal of Physics: Condensed Matter, 2002, 14(14): 3743-3750.
[16] DOHERTY M W, MANSON N B, DELANEY P, et al. The nitrogen-vacancy colour centre in diamond[J]. Physics Reports, 2013, 528(1): 1-45.
[17] TAYLOR J M, CAPPELLARO P, CHILDRESS L, et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Physics, 2008, 4(10): 810-816.
[20] ZHOU J W, WANG P F, SHI F Z, et al. Quantum information processing and metrology with color centers in diamonds[J]. Frontiers of Physics, 2014, 9(5): 587-597.
[21] CUI J M, SUN F W, CHEN X D, et al. Quantum statistical imaging of particles without restriction of the diffraction limit[J]. Physical Review Letters, 2013, 110(15): 153901.
[22] ALKAHTANI M H, ALGHANNAM F, JIANG L K, et al. Fluorescent nanodiamonds: past, present, and future[J]. Nanophotonics, 2018, 7(8): 1423-1453.
[24] GOSS J P, JONES R, BREUER S J, et al. The twelve-line 1.682 eV luminescence center in diamond and the vacancy-silicon complex[J]. Physical Review Letters, 1996, 77(14): 3041-3044.
[25] HEPP C, MüLLER T, WASELOWSKI V, et al. Electronic structure of the silicon vacancy color center in diamond[J]. Physical Review Letters, 2014, 112(3): 036405.
[26] AHARONOVICH I. Silicon magic[J]. Nature Photonics, 2014, 8(11): 818-819.
[28] SONG J, LI H D, LIN F, et al. Plasmon-enhanced photoluminescence of Si-V centers in diamond from a nanoassembled metal: diamond hybrid structure[J]. CrystEngComm, 2014, 16(36): 8356.
[29] CHENG S H, SONG J, WANG Q L, et al. Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond[J]. Applied Physics Letters, 2015, 107(21): 211905.
[30] SIPAHIGIL A, JAHNKE K D, ROGERS L J, et al. Indistinguishable photons from separated silicon-vacancy centers in diamond[J]. Physical Review Letters, 2014, 113(11): 113602.
[31] BHASKAR M K, SUKACHEV D D, SIPAHIGIL A, et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide[J]. Physical Review Letters, 2017, 118(22): 223603.
[32] IWASAKI T, MIYAMOTO Y, TANIGUCHI T, et al. Tin-vacancy quantum emitters in diamond[J]. Physical Review Letters, 2017, 119(25): 253601.
[33] ZHANG H C, CHEN C K, MEI Y S, et al. Micron-sized diamond particles containing Ge-V and Si-V color centers[J]. Chinese Physics B, 2019, 28(7): 076103.
[35] DOHERTY M. Quantum accelerators: a new trajectory of quantum computers[J]. Digitale Welt, 2021, 5(2): 74-79.
[36] PEZZAGNA S, MEIJER J. Quantum computer based on color centers in diamond[J]. Applied Physics Reviews, 2021, 8(1): 011308.
[37] DONG Y, XU J Y, ZHANG S C, et al. Composite-pulse enhanced room-temperature diamond magnetometry[J]. Functional Diamond, 2021, 1(1): 125-134.
[38] BUCHER D B, AUDE CRAIK D P L, BACKLUND M P, et al. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy[J]. Nature Protocols, 2019, 14(9): 2707-2747.
[39] BHASKAR M K, RIEDINGER R, MACHIELSE B, et al. Experimental demonstration of memory-enhanced quantum communication[J]. Nature, 2020, 580(7801): 60-64.
[40] ZHANG T T, PRAMANIK G, ZHANG K, et al. Toward quantitative bio-sensing with nitrogen-vacancy center in diamond[J]. ACS Sensors, 2021, 6(6): 2077-2107.
[41] LIN S R, WENG C F, YANG Y J, et al. Temperature-dependent coherence properties of NV ensemble in diamond up to 600 K[J]. Physical Review B, 2021, 104(15): 155430.
[42] CHEN N, MA H A, YAN B M, et al. Characterization of various centers in synthetic type ib diamond under HPHT annealing[J]. Crystal Growth & Design, 2018, 18(7): 3870-3876.
[43] LI S, CHOU J P, WEI J, et al. Oxygenated (113) diamond surface for nitrogen-vacancy quantum sensors with preferential alignment and long coherence time from first principles[J]. Carbon, 2019, 145: 273-280.
[44] ZHANG Q, GUO Y H, JI W T, et al. High-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion[J]. Nature Communications, 2021, 12: 1529.
[45] LI Q, WANG J F, YAN F F, et al. Room temperature coherent manipulation of single-spin qubits in silicon carbide with a high readout contrast[J]. National Science Review, 2021.
[46] XIE T Y, ZHAO Z Y, KONG X, et al. Beating the standard quantum limit under ambient conditions with solid-state spins[J]. Science Advances, 2021, 7(32): eabg9204.
[47] SAKAR B, LIU Y, SIEVERS S, et al. Quantum calibrated magnetic force microscopy[J]. Physical Review B, 2021, 104(21): 214427.
[48] RODGERS L V H, HUGHES L B, XIE M Z, et al. Materials challenges for quantum technologies based on color centers in diamond[J]. MRS Bulletin, 2021, 46(7): 623-633.
[54] TAVARES C, OMNS F, PERNOT J, et al. Electronic properties of boron-doped{111}-oriented homoepitaxial diamond layers[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 582-585.
[55] ZHU X H, SHAO S W, CHANG Y H, et al. -400 mA mm-1 drain current density normally-off polycrystalline diamond MOSFETs[J]. IEEE Electron Device Letters, 0354, PP(99): 1.
[62] LIU D Y, HAO L C, TENG Y, et al. Nitrogen modulation of boron doping behavior for accessible n-type diamond[J]. APL Materials, 2021, 9(8): 081106.
[63] VOLPE P N, MURET P, PERNOT J, et al. Extreme dielectric strength in boron doped homoepitaxial diamond[J]. Applied Physics Letters, 2010, 97(22): 223501.
[64] TRAOR A, MURET P, FIORI A, et al. Zr/oxidized diamond interface for high power Schottky diodes[J]. Applied Physics Letters, 2014, 104(5): 052105.
[65] UMEZAWA H, IKEDA K, KUMARESAN R, et al. Increase in reverse operation limit by barrier height control of diamond Schottky barrier diode[J]. IEEE Electron Device Letters, 2009, 30(9): 960-962.
[66] FUNAKI T, HIRANO M, UMEZAWA H, et al. High temperature switching operation of a power diamond Schottky barrier diode[J]. IEICE Electronics Express, 2012, 9(24): 1835-1841.
[67] UEDA K, KAWAMOTO K, ASANO H. High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes[J]. Diamond and Related Materials, 2015, 57: 28-31.
[68] KITABAYASHI Y, KUDO T, TSUBOI H, et al. Normally-off C-H diamond MOSFETs with partial C-O channel achieving 2-kV breakdown voltage[J]. IEEE Electron Device Letters, 2017, 38(3): 363-366.
[69] MASANTE C, PERNOT J, LETELLIER J, et al. 175V, >5.4 MV/Cm, 50 mΩ·cm2 at 250 ℃ diamond MOSFET and its reverse conduction[C]//2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD). May 19-23, 2019, Shanghai, China. IEEE, 2019: 151-154.
[70] IWASAKI T, HOSHINO Y, TSUZUKI K, et al. High-temperature operation of diamond junction field-effect transistors with lateral p-n junctions[J]. IEEE Electron Device Letters, 2013, 34(9): 1175-1177.
[71] SAHA N C, OISHI T, KIM S, et al. 145-MW/cm2 heteroepitaxial diamond MOSFETs with NO2 p-type doping and an Al2O3 passivation layer[J]. IEEE Electron Device Letters, 2020, 41(7): 1066-1069.
[72] HIRAMA K, SATO H, HARADA Y, et al. Diamond field-effect transistors with 1.3 A/mm drain current density by Al2O3 passivation layer[J]. Japanese Journal of Applied Physics, 2012, 51: 090112.
[73] YU X X, ZHOU J J, QI C J, et al. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz[J]. IEEE Electron Device Letters, 2018, 39(9): 1373-1376.
[74] YU C, ZHOU C J, GUO J C, et al. RF performance of hydrogenated single crystal diamond MOSFETs[C]//2019 IEEE International Conference on Electron Devices and Solid-State Circuits. June 12-14, 2019, Xi’an, China. IEEE, 2019: 1-3.
[75] TADJER M J, ANDERSON T J, ANCONA M G, et al. GaN-on-diamond HEMT technology with TAVG=176 ℃ at PDC, max=56 W/mm measured by transient thermoreflectance imaging[J]. IEEE Electron Device Letters, 2019, 40(6): 881-884.
[76] LEE W S, WON LEE K, LEE S H, et al. A GaN/diamond HEMTs with 23 W/mm for next generation high power RF application[C]//2019 IEEE MTT-S International Microwave Symposium. June 2-7, 2019, Boston, MA, USA. IEEE, 2019: 1395-1398.
[77] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3658-3664.
[78] ZHAO D, HU C, LIU Z C, et al. Diamond MIP structure Schottky diode with different drift layer thickness[J]. Diamond and Related Materials, 2017, 73: 15-18.
[79] ZHAO D, LIU Z C, ZHANG X F, et al. Analysis of diamond pseudo-vertical Schottky barrier diode through patterning tungsten growth method[J]. Applied Physics Letters, 2018, 112(9): 092102.
[80] ZHAO D, LIU Z C, WANG J, et al. Fabrication of dual-termination Schottky barrier diode by using oxygen-/ fluorine-terminated diamond[J]. Applied Surface Science, 2018, 457: 411-416.
[81] ZHAO D, LIU Z C, WANG J, et al. Reduction in reverse leakage current of diamond vertical Schottky barrier diode using SiNX field plate structure[J]. Results in Physics, 2019, 13: 102250.
[82] SHAO G Q, WANG J, LIU Z C, et al. Performance-improved vertical Zr/diamond Schottky barrier diode with lanthanum hexaboride interfacial layer[J]. IEEE Electron Device Letters, 2021, 42(9): 1366-1369.
[83] SANG D D, LI H D, CHENG S H, et al. Electrical transport behavior of n-ZnO nanorods/p-diamond heterojunction device at higher temperatures[J]. Journal of Applied Physics, 2012, 112(3): 036101.
[84] LI H D, SANG D D, CHENG S H, et al. Epitaxial growth of ZnO nanorods on diamond and negative differential resistance of n-ZnO nanorod/p-diamond heterojunction[J]. Applied Surface Science, 2013, 280: 201-206.
[85] WANG L Y, CHENG S H, WU C Z, et al. Fabrication and high temperature electronic behaviors of n-WO3 nanorods/p-diamond heterojunction[J]. Applied Physics Letters, 2017, 110(5): 052106.
[86] LI C M, LIU J L, CHEN L X, et al. An amazing semiconductor choice for high-frequency FET: h-terminated polycrystalline diamond film prepared by DC arc jet CVD[J]. Physica Status Solidi C, 2014, 11(11/12): 1692-1696.
[87] LIU J L, YU H, SHAO S W, et al. Carrier mobility enhancement on the H-terminated diamond surface[J]. Diamond and Related Materials, 2020, 104: 107750.
[88] REN Z Y, LIANG Z F, SU K, et al. Polycrystalline diamond normally-off MESFET passivated by a MoO3 layer[J]. Results in Physics, 2021, 20: 103760.
[89] REN Z Y, DING S C, LIANG Z F, et al. Diamond MOSFET with MoO3/Si3N4 doubly stacked gate dielectric[J]. Applied Physics Letters, 2022, 120(4): 042104.
[90] CUI A, ZHANG J F, REN Z Y, et al. Microwave power performance analysis of hydrogen terminated diamond MOSFET[J]. Diamond and Related Materials, 2021, 118: 108538.
[91] WANG Y F, WANG W, CHANG X H, et al. Hydrogen-terminated diamond field-effect transistor with a bilayer dielectric of HfSiO4/Al2O3[J]. Diamond and Related Materials, 2019, 99: 107530.
[92] ZHOU C J, WANG J J, GUO J C, et al. Radiofrequency performance of hydrogenated diamond MOSFETs with alumina[J]. Applied Physics Letters, 2019, 114(6): 063501.
[93] YU C, ZHOU C J, GUO J C, et al. 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz[J]. Electronics Letters, 2020, 56(7): 334-335.
[94] WANG Y F, WANG W, ABBASI H N, et al. LiF/Al2O3 as dielectrics for MOSFET on single crystal hydrogen-terminated diamond[J]. IEEE Electron Device Letters, 2020, 41(6): 808-811.
[96] CHENG S H, SANG L W, LIAO M Y, et al. Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices[J]. Applied Physics Letters, 2012, 101(23): 232907.
[97] LIU K, ZHANG S, LIU B J, et al. Investigating the energetic band diagrams of oxygen-terminated CVD grown e6 electronic grade diamond[J]. Carbon, 2020, 169: 440-445.
[98] QIAO P F, LIU K, ZHANG S, et al. Origin of two-dimensional hole gas formation on Si-treated diamond surfaces: surface energy band diagram perspective[J]. Applied Surface Science, 2022, 584: 152560.
[99] ZHANG Z F, LIN C N, YANG X, et al. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array[J]. Carbon, 2021, 173: 427-432.
[100] YAO K Y, YANG C, ZANG X N, et al. Carbon SP2-SP3 technology: graphene-on-diamond thin film UV detector[C]//2014 IEEE 27th International Conference on Micro Electro Mechanical Systems. January 26-30, 2014, San Francisco, CA, USA. IEEE, 2014: 1159-1162.
[101] LIU Z C, AO J P, LI F N, et al. Fabrication of three dimensional diamond ultraviolet photodetector through down-top method[J]. Applied Physics Letters, 2016, 109(15): 153507.
[102] LIU Z C, LIN F, ZHAO D, et al. Fabrication and characterization of (100)-oriented single-crystal diamond p-i-n junction ultraviolet detector[J]. Physica Status Solidi (a), 2020, 217(21): 2000207.
[103] XUE J J, LIU K, LIU B J, et al. UV-blue photodetectors based on n-SnOx/p-diamond heterojunctions[J]. Materials Letters, 2019, 257: 126621.
[104] GUO Y Z, LIU J L, LIU J W, et al. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 703-712.
[105] GIROLAMI M, SERPENTE V, MASTELLONE M, et al. Self-powered solar-blind ultrafast UV-C diamond detectors with asymmetric Schottky contacts[J]. Carbon, 2022, 189: 27-36.
[107] EKIMOV E A, SIDOROV V A, BAUER E D, et al. Superconductivity in diamond[J]. Nature, 2004, 428(6982): 542-545.
[108] TAKANO Y, TAKENOUCHI T, ISHII S, et al. Superconducting properties of homoepitaxial CVD diamond[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 911-914.
[109] OKAZAKI H, WAKITA T, MURO T, et al. Signature of high Tc above 25 K in high quality superconducting diamond[J]. Applied Physics Letters, 2015, 106(5): 052601.
[110] WANG Z L, LUO Q, LIU L W, et al. The superconductivity in boron-doped polycrystalline diamond thick films[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 659-663.
[111] ZHANG G F, ZHOU Y H, KORNEYCHUK S, et al. Superconductor-insulator transition driven by pressure-tuned intergrain coupling in nanodiamond films[J]. Physical Review Materials, 2019, 3(3): 034801.
[113] TITOVA N, KARDAKOVA A I, TOVPEKO N, et al. Slow electron-phonon cooling in superconducting diamond films[J]. IEEE Transactions on Applied Superconductivity, 2016, 27(4): 1-4.
[114] YANG N J, YU S Y, MACPHERSON J V, et al. Conductive diamond: synthesis, properties, and electrochemical applications[J]. Chemical Society Reviews, 2019, 48(1): 157-204.
[116] SHI Z T, YUAN Q L, WANG Y Z, et al. Optical properties of bulk single-crystal diamonds at 80-1200 K by vibrational spectroscopic methods[J]. Materials, 2021, 14(23): 7435.
[128] SEREBRENNIKOV D, CLEMENTYEV E, SEMENOV A, et al. Optical performance of materials for X-ray refractive optics in the energy range 8-100 keV[J]. Journal of Synchrotron Radiation, 2016, 23(Pt 6): 1315-1322.
[130] ZHU J F, DU C H, BAO L Y, et al. Wideband output Brewster window for terahertz TWT amplifiers application[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(2): 133-136.
[131] ANDREEVA M S, ARTYUSHKIN N V, KRYMSKII M I, et al. Effect of CO2-laser power density on the absorption coefficient of polycrystalline CVD diamonds[J]. Quantum Electronics, 2020, 50(12): 1140-1145.
[134] SABELLA A, PIPER J A, MILDREN R P. 1240 nm diamond Raman laser operating near the quantum limit[J]. Optics Letters, 2010, 35(23): 3874-3876.
[135] BAI Z X, ZHAO C, QI Y Y, et al. Towards long-wave infrared lasing by diamond Raman conversion[C]//2020 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). August 2-6, 2020, Sydney, NSW, Australia. IEEE, 2020: 1-2.
[138] WILLIAMS R J, NOLD J, STRECKER M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews, 2015, 9(4): 405-411.
[139] BAI Z X, WILLIAMS R J, KITZLER O, et al. Diamond Brillouin laser in the visible[J]. APL Photonics, 2020, 5(3): 031301.
[140] ANTIPOV S, SABELLA A, WILLIAMS R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam[J]. Optics Letters, 2019, 44(10): 2506-2509.
[141] ANTIPOV S, WILLIAMS R J, SABELLA A, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power[J]. Optics Express, 2020, 28(10): 15232-15239.
[150] HUANG Y B, CHEN L X, SHAO S W, et al. The 7-in. freestanding diamond thermal conductive film fabricated by DC arc Plasma Jet CVD with multi-stage magnetic fields[J]. Diamond and Related Materials, 2022, 122: 108812.
[152] SUN H R, SIMON R B, POMEROY J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications[J]. Applied Physics Letters, 2015, 106(11): 111906.
[153] SUN H, LIU D, POMEROY J W, et al. GaN-on-diamond: Robust mechanical and thermal properties[J]. CS MANTECH, 2016, 2011 (5): 201-204.
[154] ZHOU Y, RAMANETI R, ANAYA J, et al. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs[J]. Applied Physics Letters, 2017, 111(4): 041901.
[155] ZHOU Y, ANAYA J, POMEROY J, et al. Barrier-layer optimization for enhanced GaN-on-diamond device cooling[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 34416-34422.
[157] LIU T T, KONG Y C, WU L S, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology[J]. IEEE Electron Device Letters, 2017, 38(10): 1417-1420.
[159] GUO H X, KONG Y C, CHEN T S. Thermal simulation of high power GaN-on-diamond substrates for HEMT applications[J]. Diamond and Related Materials, 2017, 73: 260-266.
[160] LIANG J B, KOBAYASHI A, SHIMIZU Y, et al. Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design[J]. Advanced Materials, 2021, 33(43): 2104564.
[161] SONG C, KIM J, CHO J. The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119992.
[162] WANG K, RUAN K, HU W B, et al. Room temperature bonding of GaN on diamond wafers by using Mo/Au nano-layer for high-power semiconductor devices[J]. Scripta Materialia, 2020, 174: 87-90.
[163] LU W, LI J, MIAO J Y, et al. Application of high-thermal-conductivity diamond for space phased array antenna[J]. Functional Diamond, 2021, 1(1): 189-196.
[167] DANG C Q, LU A L, WANG H Y, et al. Diamond semiconductor and elastic strain engineering[J]. Journal of Semiconductors, 2022, 43(2): 021801.
[168] ZHAO Y, LI C M, LIU J L, et al. The interface and mechanical properties of a CVD single crystal diamond produced by multilayered nitrogen doping epitaxial growth[J]. Materials, 2019, 12(15): 2492.
[169] AN K, CHEN L X, YAN X B, et al. Fracture behavior of diamond films deposited by DC arc plasma jet CVD[J]. Ceramics International, 2018, 44(11): 13402-13408.
[170] AN K, CHEN L X, YAN X B, et al. Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films[J]. Ceramics International, 2018, 44(15): 17845-17851.
[174] GRUEN D M, ZUIKER C D, KRAUSS A R, et al. Carbon dimer, C2, as a growth species for diamond films from methane/hydrogen/argon microwave plasmas[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13(3): 1628-1632.
[175] GRUEN D M, KRAUSS A R, ZUIKER C D, et al. Characterization of nanocrystalline diamond films by core-level photoabsorption[J]. Applied Physics Letters, 1996, 68(12): 1640-1642.
[176] CHANDRAN M, KUMARAN C R, DUMPALA R, et al. Nanocrystalline diamond coatings on the interior of WC-Co dies for drawing carbon steel tubes: enhancement of tube properties[J]. Diamond and Related Materials, 2014, 50: 33-37.
[179] LIN Q, CHEN S L, SHEN B, et al. CVD diamond coated drawing dies: a review[J]. Materials and Manufacturing Processes, 2021, 36(4): 381-408.
[180] HE Y P, CUI Y X, SUN F H. Enhancement of adhesion strength and tribological performance of cvd diamond films on tungsten carbide substrates with high cobalt content via amorphous sic interlayers[J]. Surface Review and Letters, 2019, 26(9): 1950051.
[181] ZHANG T, FENG Q, YU Z Y, et al. Effect of mechanical pretreatment on nucleation and growth of HFCVD diamond films on cemented carbide tools with a complex shape[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105016.
[183] WHEELER J M, RAGHAVAN R, WEHRS J, et al. Approaching the limits of strength: measuring the uniaxial compressive strength of diamond at small scales[J]. Nano Letters, 2016, 16(1): 812-816.
[184] BANERJEE A, BERNOULLI D, ZHANG H T, et al. Ultralarge elastic deformation of nanoscale diamond[J]. Science, 2018, 360(6386): 300-302.
[185] NIE A M, BU Y Q, LI P H, et al. Approaching diamond’s theoretical elasticity and strength limits[J]. Nature Communications, 2019, 10: 5533.
[186] DANG C Q, CHOU J P, DAI B, et al. Achieving large uniform tensile elasticity in microfabricated diamond[J]. Science, 2021, 371(6524): 76-78.
[187] LIU C, SONG X Q, LI Q, et al. Superconductivity in compression-shear deformed diamond[J]. Physical Review Letters, 2020, 124(14): 147001.
[188] KAISER K, SCRIVEN L M, SCHULZ F, et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon[J]. Science, 2019, 365(6459): 1299-1301.
[189] YANG X G, YAO M G, WU X Y, et al. Novel superhard sp3 carbon allotrope from cold-compressed C70 peapods[J]. Physical Review Letters, 2017, 118(24): 245701.
[190] YUE Y H, GAO Y F, HU W T, et al. Hierarchically structured diamond composite with exceptional toughness[J]. Nature, 2020, 582(7812): 370-374.