• Advanced Photonics Nexus
  • Vol. 3, Issue 4, 046003 (2024)
Jumin Qiu1, Shuyuan Xiao2,3, Lujun Huang4,*, Andrey Miroshnichenko5..., Dejian Zhang1, Tingting Liu2,3,* and Tianbao Yu1,*|Show fewer author(s)
Author Affiliations
  • 1Nanchang University, School of Physics and Materials Science, Nanchang, China
  • 2Nanchang University, School of Information Engineering, Nanchang, China
  • 3Nanchang University, Institute for Advanced Study, Nanchang, China
  • 4East China Normal University, School of Physics and Electronic Science, Shanghai, China
  • 5University of New South Wales Canberra, School of Physics and Electronic Science, Canberra, Australia
  • show less
    DOI: 10.1117/1.APN.3.4.046003 Cite this Article Set citation alerts
    Jumin Qiu, Shuyuan Xiao, Lujun Huang, Andrey Miroshnichenko, Dejian Zhang, Tingting Liu, Tianbao Yu, "Decision-making and control with diffractive optical networks," Adv. Photon. Nexus 3, 046003 (2024) Copy Citation Text show less
    References

    [1] A. Krizhevsky, I. Sutskever, G. E. Hinton. Imagenet classification with deep convolutional neural networks. Commun. ACM, 60, 84-90(2017).

    [2] O. Russakovsky et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vision, 115, 211-252(2015).

    [3] Q. Chen et al. Enhanced LSTM for natural language inference, 1657-1668(2017).

    [4] J. Devlin et al. BERT: pre-training of deep bidirectional transformers for language understanding, 4171-4186(2019).

    [5] A. Grover, J. Leskovec. Node2vec: scalable feature learning for networks, 855-864(2016).

    [6] W. Ma et al. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77-90(2021).

    [7] O. Khatib et al. Learning the physics of all-dielectric metamaterials with deep lorentz neural networks. Adv. Opt. Mater., 10, 2200097(2022).

    [8] O. Khatib et al. Deep learning the electromagnetic properties of metamaterials—a comprehensive review. Adv. Funct. Mater., 31, 2101748(2021).

    [9] M. A. Aceves-Fernandez, L. Huang, L. Xu, A. E. Miroshnichenko. Deep learning enabled nanophotonics. Advances and Applications in Deep Learning(2020).

    [10] C. C. Nadell et al. Deep learning for accelerated all-dielectric metasurface design. Opt. Express, 27, 27523-27535(2019).

    [11] L. Xu et al. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach. Adv. Photonics, 2, 026003(2020).

    [12] P. R. Wiecha, O. L. Muskens. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures. Nano Lett., 20, 329-338(2020).

    [13] P. Dai et al. Accurate inverse design of Fabry–Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network. Photonics Res., 9, B236-B246(2021).

    [14] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [15] J. Feldmann et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [16] R. Hamerly et al. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X, 9, 021032(2019).

    [17] H. Zhang et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 457(2021).

    [18] J. Liu et al. Research progress in optical neural networks: theory, applications and developments. PhotoniX, 2, 5(2021).

    [19] Z. Wu et al. Neuromorphic metasurface. Photonics Res., 8, 46-50(2020).

    [20] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [21] H. Chen et al. Diffractive deep neural networks at visible wavelengths. Engineering, 7, 1483-1491(2021).

    [22] X. Luo et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light: Sci. Appl., 11, 158(2022).

    [23] C. Liu et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron., 5, 113-122(2022).

    [24] H. Zheng et al. Meta-optic accelerators for object classifiers. Sci. Adv., 8, eabo6410(2022).

    [25] T. Yan et al. Fourier-space diffractive deep neural network. Phys. Rev. Lett., 123, 023901(2019).

    [26] C. Qian et al. Performing optical logic operations by a diffractive neural network. Light: Sci. Appl., 9, 59(2020).

    [27] T. Zhou et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 15, 367-373(2021).

    [28] J. Schulman et al. Proximal policy optimization algorithms(2017).

    [29] Y. Bengio, D. P. Kingma, J. Ba, Y. LeCun. Adam: a method for stochastic optimization(2015).

    [30] K. He et al. Deep residual learning for image recognition, 770-778(2016).

    [31] H. Dou et al. Residual D2NN: training diffractive deep neural networks via learnable light shortcuts. Opt. Lett., 45, 2688-2691(2020). https://doi.org/10.1364/OL.389696

    [32] S. Zheng, S. Xu, D. Fan. Orthogonality of diffractive deep neural network. Opt. Lett., 47, 1798-1801(2022).

    [33] M. Ranzato, I. O. Tolstikhin et al. MLP-mixer: an all-MLP architecture for vision. Advances in Neural Information Processing Systems, 34, 24261-24272(2021).

    [34] S. P. Rodrigues et al. Weighing in on photonic-based machine learning for automotive mobility. Nat. Photonics, 15, 66-67(2021).

    [35] A. H. Dorrah, F. Capasso. Tunable structured light with flat optics. Science, 376, eabi6860(2022).

    [36] L. Li et al. Machine-learning reprogrammable metasurface imager. Nat. Commun., 10, 1082(2019).

    [37] T. Liu et al. Phase-change metasurfaces for dynamic image display and information encryption. Phys. Rev. Appl., 18, 044078(2022).

    [38] W. J. Padilla, R. D. Averitt. Imaging with metamaterials. Nat. Rev. Phys., 4, 85-100(2022).

    [39] Z. Wang et al. Arbitrary polarization readout with dual-channel neuro-metasurfaces. Adv. Sci., 10, 2204699(2022).

    [40] C. Qian et al. Dynamic recognition and mirage using neuro-metamaterials. Nat. Commun., 13, 2694(2022).

    [41] C. He et al. Pluggable multitask diffractive neural networks based on cascaded metasurfaces. Opto-Electron. Adv., 7, 230005(2024).

    [42] M.-H. Guo et al. Beyond self-attention: external attention using two linear layers for visual tasks. IEEE Trans. Pattern Anal. Mach. Intell., 45, 5436-5447(2023).

    [43] C. Schlickriede et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett., 20, 4370-4376(2020).

    [44] Y. Xiao, H. Qian, Z. Liu. Nonlinear metasurface based on giant optical Kerr response of gold quantum wells. ACS Photonics, 5, 1654-1659(2018).

    [45] M. Akie et al. GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform. IEEE J. Sel. Top. Quantum Electron., 24, 1-8(2018).

    [46] Y. Zuo et al. All-optical neural network with nonlinear activation functions. Optica, 6, 1132-1137(2019).

    [47] Z. Xu et al. A multichannel optical computing architecture for advanced machine vision. Light: Sci. Appl., 11, 255(2022).

    Jumin Qiu, Shuyuan Xiao, Lujun Huang, Andrey Miroshnichenko, Dejian Zhang, Tingting Liu, Tianbao Yu, "Decision-making and control with diffractive optical networks," Adv. Photon. Nexus 3, 046003 (2024)
    Download Citation