[1] DENG F G, LONG G L. Controlled order rearrangement encryption for quantum key distribution[J]. Physical Review A, 2003, 68(4): 042315.
[2] DENG F G, LONG G L. Bidirectional quantum key distribution protocol with practical faint laser pulses[J]. Physical Review A, 2004, 70(1): 012311.
[3] ZHANG Z J, MAN Z X, SHI S H. An efficient multiparty quantum key distribution scheme[J]. International Journal of Quantum Information, 2005, 3(3): 555-559.
[4] BOSTROM K, FELBINGER T. Deterministic secure direct communication using entanglement[J]. Physical Review Letters, 2002, 89(18): 187902.
[5] ZHANG Z J, MAN Z X, LI Y. Improving Wójcik's eavesdropping attack on the ping–pong protocol[J]. Physics Letters A, 2004, 333(1): 46-50.
[6] YI X J, NIE Y Y, ZHOU N R, et al. Quantum secure direct communication using entangled photon pairs and local measurement[J]. Communications in Theoretical Physics, 2008, 50(1): 81-84.
[7] JIN X R, JI X, ZHANG YQ, et al. Three-party quantum secure direct communication based on GHZ states[J]. Physics Letters A, 2006, 354(1): 67-70.
[8] WANG J, ZHANG Q, TANG C J. Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state[J]. Optics Communications, 2006, 266(2): 732-737.
[9] LI J, SONG D J, GUO X J, et al. A quantum secure direct communication protocol based on a five-particle cluster state and classical XOR operation[J]. Chinese Physics C, 2012, 36(1): 31-36.
[10] SUN Z W, DU R G, LONG DY. Quantum secure direct communication with two-photon four-qubit cluster states[J]. International Journal of Theoretical Physics, 2012, 51(6): 1946-1952.
[11] QIN S J. Reexamining the security of controlled quantum secure direct communication by using four particle cluster states[J]. International Journal of Theoretical Physics, 2012, 51(9): 2714-2718.
[12] SUN Z W, DU R G, LONG D Y. Quantum secure direct communication with two-photon four-qubit cluster states[J]. International Journal of Theoretical Physics, 2012, 51(6): 1946-1952.
[13] LIU Z H, CHEN H W, LIU W J, et al. Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states[J]. Quantum Information Processing, 2013, 12(1): 587-599.
[15] BRIEGEL H J, RAUSSENDORF R. Persistent Entanglement in Arrays of Interacting Particles[J]. Physical Review Letters, 2001, 86(5): 910-913.
[16] NIE Y Y, LI Y H, WANG Z S. Semi-quantum information splitting using GHZ-type states[J]. Quantum Information Processing, 2013, 12(1): 437-448.
[18] SHENG Y B, ZHOU L, ZHAO S M. Efficient two-step entanglement concentration for arbitrary W states[J]. Physics Letters A, 2012, 85(4): 042302.
[21] GAO F, GUO F Z, WEN Q Y, et al. Forcible-measurement attack on quantum secure direct communication protocol with cluster state[J]. Chinese Physics Letters, 2008, 25(8): 2766-2769.
[22] CAO W F, YANG Y G, WEN Q Y. Quantum secure direct communication with cluster states[J]. Science China Physics, Mechanics & Astronomy, 2010, 53(7): 1271-1275.
[23] LI X H, ZHOU P, LI C Y, et al. Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(8): 1975-1983.