• Chinese Journal of Lasers
  • Vol. 41, Issue 4, 403002 (2014)
Li Xingcheng1、2、*, Zhang Yongkang3, Lu Yalin2, Chen Jüfang2, and Zhou Jinyu2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/cjl201441.0403002 Cite this Article Set citation alerts
    Li Xingcheng, Zhang Yongkang, Lu Yalin, Chen Jüfang, Zhou Jinyu. Research of Corrosion Resistance for AZ31 Magnesium Alloy by Laser Shock Processing[J]. Chinese Journal of Lasers, 2014, 41(4): 403002 Copy Citation Text show less
    References

    [1] Yun Kun, Li Wenxian, Wang Richu, et al.. Research,development and application of wrought magnesium alloys[J]. Journal of Nonferrous Metals, 2003, 13(2): 277-287.

    [2] Nicholas N, Atrens A, Song G, et al.. A critical review of the stress corrosion crack (SCC) of magnesium alloys[J].Advanced Engineering Materials, 2005, 7(8): 659-693.

    [3] Winzera N, Atrensa A, Dietzel W. Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys[J]. Materials Science and Engineering A, 2007, 466(1-2): 18-31.

    [4] Zhang Yongkang, Chen Jüfang, Xu Renjun. Experimental research of laser shock strengthening AM50 magnesium alloy[J]. Chinese J Lasers, 2008, 35(7): 1068-1072.

    [5] Pei Xu, Ren Aiguo, Gu Yongyu, et al.. Effects of laser shock processing on mechanical properties of AZ91 magnesium alloy[J]. Laser Technology, 2010, 34(4): 552-556.

    [6] Y K Zhang, J You, J Z Lu, et al.. Effect of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface & Coatings Technology, 2010, 204(24): 3947-3953.

    [7] Ge Maozhong, Zhang Yongkang, Xiang Jianyun. Research on laser shock strengthening and stress corrosion cracking resistance of AZ31B magnesium alloy[J]. Chinese J Lasers, 2010, 37(11): 2925-2930.

    [8] Nie Guifeng, Feng Aixin, Ren Xudong, et al.. Effect of laser shock processing parameters on residual principal stresses and its directions of 2024 aluminum alloy[J]. Chinese J Lasers, 2012, 39(1): 0103006.

    [9] Yu Tianyu, Dai Fengzei, Zhang Yongkang, et al.. Simulation and experiment study on residual stress field of 2024 aluminum alloy induced by flat-top laser beam[J]. Chinese J Lasers, 2012, 39(10): 1003006.

    [10] Zhong Junwei, Lu Jingzhong, Luo Kaiyu, et al.. Tribological behaviors of laser shock processing ANSI 8620 steel[J]. Chinese J Lasers, 2012, 39(1): 0103001.

    [11] H Q Sun, Y N Shi, M X Zhang, et al.. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy[J]. Acta Materialia, 2007, 55(3): 975-982.

    [12] R M Wang, A Eliezer, E Gutman. Microstructures and dislocations in the stressed AZ91D magnesium alloys[J]. Materials Science and Engineering A, 2002, 344(1-2): 279-287.

    [13] J Z Lu, K Y Luo, Y K Zhang, et al.. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16): 5354-5362.

    [14] K Y Luo, J Z Lu, L F Zhang, et al.. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing[J]. Materials and Design, 2010, 31(5): 2599-2603.

    [15] Liu baosheng. Microstructure and Grain Refinement Mechanism of Surface Nanostructure Magnesium Alloys[D]. Taiyuan: Taiyuan University of Techology, 2007. 37-39.

    CLP Journals

    [1] Wang Jiangtao, Zhang Yongkang, Chen Jufang, Zhou Jinyu, Lu Yalin, Zhang Chaoyang. Effect of Laser Shock Processing on Electrochemical Corrosion Behavior of 7075 Aluminum Alloy Plasma Arc Weldments[J]. Chinese Journal of Lasers, 2015, 42(11): 1203006

    [2] Zhou Zihao, Li Xiaohong, Xie Changxin, Zhu Ming, Feng Jie. Silicon Surface Topography by Laser-Induced Plasma Shock Waves in the Air and under Water[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101405

    [3] He Weifeng, Zhang Jin, Yang Zhuojun, Yang Zhufang, Li Yuqin, Li Jing. Fatigue Properties Research of Titanium Alloy Repaired by Laser Cladding and Laser Shock Processing[J]. Chinese Journal of Lasers, 2015, 42(11): 1103008

    [4] Ye Yunxia, Zhao Shuyi, Zuo Hui. Study of Laser-Driven Shock Wave Propagation in Film-Substrate Structure Material[J]. Chinese Journal of Lasers, 2016, 43(5): 503003

    [5] Meng Xiankai, Zhou Jianzhong, Huang Shu, Sheng Jie, Su Chun, Yang Xiangwei. Molecular Dynamics Simulation of Dislocation Development in Monocrystalline Copper induced by Warm Laser Peening[J]. Chinese Journal of Lasers, 2015, 42(7): 702003

    [6] Yang Genmei, Zhang Lingfeng, He Huanju. Effect of Annealing on Mechanical Properties of AZ31 Magnesium After Laser Shock Processing[J]. Chinese Journal of Lasers, 2015, 42(2): 206002

    [7] Jiang Chongyuan, Wang Changyu, Luo Kaiyu, Lu Jinzhong. Effects of Laser Shock Layer Number and Cl- Concentration on Anticorrosion Behaviors of AM50 Mg Alloys[J]. Chinese Journal of Lasers, 2018, 45(9): 902004

    Li Xingcheng, Zhang Yongkang, Lu Yalin, Chen Jüfang, Zhou Jinyu. Research of Corrosion Resistance for AZ31 Magnesium Alloy by Laser Shock Processing[J]. Chinese Journal of Lasers, 2014, 41(4): 403002
    Download Citation