• Acta Photonica Sinica
  • Vol. 51, Issue 5, 0551308 (2022)
Heng WANG1、2, Guixin LI2、*, and Ting MEI1、*
Author Affiliations
  • 1School of Physical Science and Technology,Northwestern Polytechnical University,Xi'an 710129,China
  • 2Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong 518055,China
  • show less
    DOI: 10.3788/gzxb20225105.0551308 Cite this Article
    Heng WANG, Guixin LI, Ting MEI. Light-matter Interactions in Epsilon-near-zero Materials(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551308 Copy Citation Text show less
    References

    [1] I LIBERAL, N ENGHETA. Near-zero refractive index photonics. Nature Photonics, 11, 149-158(2017).

    [2] J B PENDRY, A J HOLDEN, W J STEWART et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76, 4773-4776(1996).

    [3] J B PENDRY, A J HOLDEN, D J ROBBINS et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [4] D R SMITH, W J PADILLA, D C VIER et al. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84, 4184-4187(2000).

    [5] R A SHELBY, D R SMITH, S SCHULTZ. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [6] E J VESSEUR, T COENEN, H CAGLAYAN et al. Experimental verification of n = 0 structures for visible light. Physical Review Letters, 110, 013902(2013).

    [7] Y LI, S KITA, P MUNOZ et al. On-chip zero-index metamaterials. Nature Photonics, 9, 738(2015).

    [8] X HUANG, Y LAI, Z H HANG et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Materials, 10, 582-586(2011).

    [9] T DONG, J LIANG, S CAMAYD-MUNOZ et al. Ultra-low-loss on-chip zero-index materials. Light: Science & Applications, 10, 10(2021).

    [10] H TANG, C DEVAULT, S A CAMAYD-MUNOZ et al. Low-loss zero-index materials. Nano letters, 21, 914-920(2021).

    [11] Y LI, C T CHAN, E MAZUR. Dirac-like cone-based electromagnetic zero-index metamaterials. Light: Science & Applications, 10, 203(2021).

    [12] P MOITRA, Y M YANG, Z ANDERSON et al. Realization of an all-dielectric zero-index optical metamaterial. Nature Photonics, 7, 791-795(2013).

    [13] N KINSEY, C DEVAULT, A BOLTASSEVA et al. Near-zero-index materials for photonics. Nature Reviews Materials, 4, 742-760(2019).

    [14] X X NIU, X Y HU, S S CHU et al. Epsilon-near-zero photonics: a new platform for integrated devices. Advanced Optical Materials, 6, 1701292(2018).

    [15] M CHOUDHURY SAJID, D WANG, K CHAUDHURI et al. Material platforms for optical metasurfaces. Nanophotonics, 7, 959-987(2018).

    [16] H HOSONO, D C PAINE, D GINLEY. Handbook of transparent conductors(2010).

    [17] Z Z MA, Z R LI, K LIU et al. Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics, 4, 198-213(2015).

    [18] J W GAO, K KEMPA, M GIERSIG et al. Physics of transparent conductors. Advances in Physics, 65, 553-617(2016).

    [19] P J GUO, R D SCHALLER, J B KETTERSON et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nature Photonics, 10, 267-273(2016).

    [20] M Z ALAM, S A SCHULZ, J UPHAM et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nature Photonics, 12, 79-83(2018).

    [21] M Z ALAM, I DE LEON, R W BOYD. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science, 352, 795-797(2016).

    [22] Y M YANG, K KELLEY, E SACHET et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nature Photonics, 11, 390(2017).

    [23] O RESHEF, I DE LEON, M Z ALAM et al. Nonlinear optical effects in epsilon-near-zero media. Nature Reviews Materials, 4, 535-551(2019).

    [24] J WU, Z T XIE, Y SHA et al. Epsilon-near-zero photonics: infinite potentials. Photonics Research, 9, 1616-1644(2021).

    [25] M SILVEIRINHA, N ENGHETA. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Physical Review Letters, 97, 157403(2006).

    [26] M G SILVEIRINHA, N ENGHETA. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials. Physical Review B, 76, 245109(2007).

    [27] R LIU, Q CHENG, T HAND et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Physical Review Letters, 100, 023903(2008).

    [28] B EDWARDS, A ALU, M E YOUNG et al. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Physical Review Letters, 100, 033903(2008).

    [29] B EDWARDS, A ALU, M G SILVEIRINHA et al. Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. Journal of Applied Physics, 105, 044905(2009).

    [30] J LUO, P XU, H Y CHEN et al. Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials. Applied Physics Letters, 100, 221903(2012).

    [31] A ALU, N ENGHETA. Cloaking a sensor. Physical Review Letters, 102, 233901(2009).

    [32] I LIBERAL, A M MAHMOUD, Y LI et al. Photonic doping of epsilon-near-zero media. Science, 355, 1058-1062(2017).

    [33] A CIATTONI, A MARINI, C RIZZA. Efficient vortex generation in subwavelength epsilon-near-zero slabs. Physical Review Letters, 118, 104301(2017).

    [34] Jianghao ZHOU, Yihang CHEN. Research on the control of the ENZ wavelength of ITO films. Semiconductor optelectronics, 42, 390-394(2021).

    [35] C G GRANQVIST, A HULTAKER. Transparent and conducting ITO films: new developments and applications. Thin Solid Films, 411, 1-5(2002).

    [36] G V NAIK, J KIM, A BOLTASSEVA. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Optical Materials Express, 1, 1090-1099(2011).

    [37] G V NAIK, V M SHALAEV, A BOLTASSEVA. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 25, 3264-3294(2013).

    [38] X DAI, H WANG, L SUN et al. Extracting epsilon-near-zero wavelength of ultrathin plasmonic film. Applied Optics, 60, 9774-9779(2021).

    [39] R N JOSHI, V P SINGH, J C MCCLURE. Characteristics of indium tin oxide films deposited by r.f. magnetron sputtering. Thin Solid Films, 257, 32-35(1995).

    [40] H C LEE, O O PARK. Behaviors of carrier concentrations and mobilities in indium-tin oxide thin films by DC magnetron sputtering at various oxygen flow rates. Vacuum, 77, 69-77(2004).

    [41] O TUNA, Y SELAMET, G AYGUN et al. High quality ITO thin films grown by dc and RF sputtering without oxygen. Journal of Physics D-Applied Physics, 43, 055402(2010).

    [42] S GURUNG, A ANOPCHENKO, S BEJ et al. Atomic layer engineering of epsilon-near-zero ultrathin films with controllable field enhancement. Advanced Materials Interfaces, 7, 2000844(2020).

    [43] D FOMRA, K DING, V AVRUTIN et al. Al:ZnO as a platform for near-zero-index photonics: enhancing the doping efficiency of atomic layer deposition. Optical Materials Express, 10, 3060-3072(2020).

    [44] Y WANG, A CAPRETTI, NEGRO LDAL. Wide tuning of the optical and structural properties of alternative plasmonic materials. Optical Materials Express, 5, 2415-2430(2015).

    [45] H WANG, X H DAI, K DU et al. Tuning epsilon-near-zero wavelength of indium tin oxide film via annealing. Journal of Physics D-Applied Physics, 53, 225108(2020).

    [46] P P IYER, M PENDHARKAR, C J PALMSTROM et al. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates. Nature communications, 8, 472(2017).

    [47] R MAAS, J PARSONS, N ENGHETA et al. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nature Photonics, 7, 907-912(2013).

    [48] S SURESH, O RESHEF, M Z ALAM et al. Enhanced nonlinear optical responses of layered epsilon-near-zero metamaterials at visible frequencies. ACS Photonics, 8, 125-129(2020).

    [49] A PODDUBNY, I IORSH, P BELOV et al. Hyperbolic metamaterials. Nature Photonics, 7, 948-957(2013).

    [50] M KAMANDI, C GUCLU, T S LUK et al. Giant field enhancement in longitudinal epsilon-near-zero films. Physical Review B, 95, 161105(2017).

    [51] S VASSANT, J P HUGONIN, F MARQUIER et al. Berreman mode and epsilon near zero mode. Optics Express, 20, 23971-23977(2012).

    [52] S CAMPIONE, I BRENER, F MARQUIER. What is an epsilon-near-zero mode?(2015).

    [53] S CAMPIONE, I BRENER, F MARQUIER. Theory of epsilon-near-zero modes in ultrathin films. Physical Review B, 91, 121408(2015).

    [54] S VASSANT, A ARCHAMBAULT, F MARQUIER et al. Epsilon-near-zero mode for active optoelectronic devices. Physical Review Letters, 109, 237401(2012).

    [55] Y C JUN, J RENO, T RIBAUDO et al. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. Nano letters, 13, 5391-5396(2013).

    [56] S CAMPIONE, J R WENDT, G A KEELER et al. Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers. ACS Photonics, 3, 293-297(2016).

    [57] S A SCHULZ, A A TAHIR, M Z ALAM et al. Optical response of dipole antennas on an epsilon-near-zero substrate. Physical Review A, 93, 063846(2016).

    [58] J KIM, A DUTTA, G V NAIK et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica, 3, 339-346(2016).

    [59] J R HENDRICKSON, S VANGALA, C DASS et al. Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photonics, 5, 776-781(2018).

    [60] C T DEVAULT, V A ZENIN, A PORS et al. Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates. Optica, 5, 1557-1563(2018).

    [61] M HABIB, D BRIUKHANOVA, N DAS et al. Controlling the plasmon resonance via epsilon-near-zero multilayer metamaterials. Nanophotonics, 9, 3637-3644(2020).

    [62] K MANUKYAN, M Z ALAM, C LIU et al. Dependence of the coupling properties between a plasmonic antenna array and a sub-wavelength epsilon-near-zero film on structural and material parameters. Applied Physics Letters, 118, 241102(2021).

    [63] K WANG, A Y LIU, H H HSIAO et al. Large optical nonlinearity of dielectric nanocavity-assisted Mie resonances strongly coupled to an epsilon-near-zero mode. Nano Letters, 22, 702-709(2022).

    [64] E FEIGENBAUM, K DIEST, H A ATWATER. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Letters, 10, 2111-2116(2010).

    [65] Y W HUANG, H W LEE, R SOKHOYAN et al. Gate-tunable conducting oxide metasurfaces. Nano Letters, 16, 5319-5325(2016).

    [66] A HOWES, W Y WANG, I KRAVCHENKO et al. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica, 5, 787-792(2018).

    [67] X G LIU, J H KANG, H T YUAN et al. Tuning of plasmons in transparent conductive oxides by carrier accumulation. ACS Photonics, 5, 1493-1498(2018).

    [68] D GHINDANI, A R RASHED, M HABIB et al. Gate tunable coupling of epsilon-near-zero and plasmonic modes. Advanced Optical Materials, 9, 2100800(2021).

    [69] A P VASUDEV, J H KANG, J PARK et al. Electro-optical modulation of a silicon waveguide with an "epsilon-near-zero" material. Optics Express, 21, 26387-26397(2013).

    [70] M G WOOD, S CAMPIONE, S PARAMESWARAN et al. Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica, 5, 233-236(2018).

    [71] X JIANG, H LU, Q LI et al. Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 μm. Nanophotonics, 7, 1835-1843(2018).

    [72] K SHI, W ZHAO, Z LU. Epsilon-near-zero-slot waveguides and their applications in ultrafast laser beam steering(2014).

    [73] Z L LU, W S ZHAO, K F SHI. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photonics Journal, 4, 735-740(2012).

    [74] X G LIU, K ZANG, J H KANG et al. Epsilon-near-zero Si slot-waveguide modulator. ACS Photonics, 5, 4484-4490(2018).

    [75] R W BOYD. Nonlinear optics(2019).

    [76] H SUCHOWSKI, K O'BRIEN, Z J WONG et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science, 342, 1223-1226(2013).

    [77] O RESHEF, E GIESE, M ZAHIRUL ALAM et al. Beyond the perturbative description of the nonlinear optical response of low-index materials. Optics Letters, 42, 3225-3228(2017).

    [78] H WANG, K DU, C H JIANG et al. Extended drude model for intraband-transition-induced optical nonlinearity. Physical Review Applied, 11, 064062(2019).

    [79] H WANG, K DU, R B LIU et al. Role of hot electron scattering in epsilon-near-zero optical nonlinearity. Nanophotonics, 9, 4287-4293(2020).

    [80] Q GUO, Y CUI, Y YAO et al. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Advanced Materials, 29, 1700754(2017).

    [81] H MA, Y A ZHAO, Y C SHAO et al. Principles to tailor the saturable and reverse saturable absorption of epsilon-near-zero material. Photonics Research, 9, 678-686(2021).

    [82] J B KHURGIN, M CLERICI, N KINSEY. Fast and slow nonlinearities in epsilon‐near‐zero materials. Laser & Photonics Reviews, 15, 2000291(2020).

    [83] M CLERICI, N KINSEY, C DEVAULT et al. Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nature Communications, 8, 15829(2017).

    [84] N KINSEY, C DEVAULT, J KIM et al. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica, 2, 616-622(2015).

    [85] L CASPANI, R P KAIPURATH, M CLERICI et al. Enhanced nonlinear refractive index in epsilon-near-zero materials. Physical Review Letters, 116, 233901(2016).

    [86] J BOHN, T S LUK, C TOLLERTON et al. All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide. Nature Communications, 12, 1017(2021).

    [87] B T DIROLL, P GUO, R P CHANG et al. Large transient optical modulation of epsilon-near-zero colloidal nanocrystals. ACS Nano, 10, 10099-10105(2016).

    [88] P GUO, R D SCHALLER, L E OCOLA et al. Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum. Nature Communications, 7, 12892(2016).

    [89] J KIM, E G CARNEMOLLA, C DEVAULT et al. Dynamic control of nanocavities with tunable metal oxides. Nano Letters, 18, 740-746(2018).

    [90] F GHEBREMICHAEL, C POGA, M G KUZYK. Optical second harmonic characterization of spontaneous symmetry‐breaking at polymer/transparent conductor interfaces. Applied Physics Letters, 66, 139-141(1995).

    [91] M A VINCENTI, D DE CEGLIA, A CIATTONI et al. Singularity-driven second- and third-harmonic generation at ε-near-zero crossing points. Physical Review A, 84, 063826(2011).

    [92] M SCALORA, M A VINCENTI, D DE CEGLIA et al. Dynamical model of harmonic generation in centrosymmetric semiconductors at visible and UV wavelengths. Physical Review A, 85, 053809(2012).

    [93] A CAPRETTI, Y WANG, N ENGHETA et al. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photonics, 2, 1584-1591(2015).

    [94] C ARGYROPOULOS, G D’AGUANNO, A ALù. Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial. Physical Review B, 89, 235401(2014).

    [95] X L WEN, G Y LI, C Y GU et al. Doubly enhanced second harmonic generation through structural and epsilon-near-zero resonances in TiN nanostructures. ACS Photonics, 5, 2087-2093(2018).

    [96] C K DASS, H KWON, S VANGALA et al. Gap-plasmon-enhanced second-harmonic generation in epsilon-near-zero nanolayers. ACS Photonics, 7, 174-179(2019).

    [97] J DENG, Y TANG, S CHEN et al. Giant enhancement of second-order nonlinearity of epsilon-near-zero medium by a plasmonic metasurface. Nano Letters, 20, 5421-5427(2020).

    [98] D ROCCO, C DE ANGELIS, D DE CEGLIA et al. Dielectric nanoantennas on epsilon-near-zero substrates: Impact of losses on second order nonlinear processes. Optics Communications, 456, 124570(2020).

    [99] A CAPRETTI, Y WANG, N ENGHETA et al. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Optics Letters, 40, 1500-1503(2015).

    [100] T S LUK, D DE CEGLIA, S LIU et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Applied Physics Letters, 106, 151103(2015).

    [101] Y M YANG, J LU, A MANJAVACAS et al. High-harmonic generation from an epsilon-near-zero material. Nature Physics, 15, 1022(2019).

    [102] W TIAN, F LIANG, D LU et al. Highly efficient ultraviolet high-harmonic generation from epsilon-near-zero indium tin oxide films. Photonics Research, 9, 317-323(2021).

    [103] W TIAN, F LIANG, S CHI et al. Highly efficient super-continuum generation on an epsilon-near-zero surface. ACS Omega, 5, 2458-2464(2020).

    [104] W JIA, M LIU, Y LU et al. Broadband terahertz wave generation from an epsilon-near-zero material. Light: Science & Applications, 10, 11(2021).

    [105] C MCDONNELL, J DENG, S SIDERIS et al. Functional THz emitters based on Pancharatnam-Berry phase nonlinear metasurfaces. Nature Communications, 12, 30(2021).

    [106] Y LU, X FENG, Q WANG et al. Integrated terahertz generator-manipulators using epsilon-near-zero-hybrid nonlinear metasurfaces. Nano Letters, 21, 7699-7707(2021).

    [107] J B KHURGIN, M CLERICI, V BRUNO et al. Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity. Optica, 7, 226-231(2020).

    [108] V BRUNO, S VEZZOLI, C DEVAULT et al. Broad frequency shift of parametric processes in epsilon-near-zero time-varying media. Applied Sciences-Basel, 10, 1318(2020).

    [109] G EMANUELE, T ROMAIN, Y SHIXIONG et al. Photonics of time-varying media. Advanced Photonics, 4, 014002(2021).

    [110] Y ZHOU, M Z ALAM, M KARIMI et al. Broadband frequency translation through time refraction in an epsilon-near-zero material. Nature Communications, 11, 2180(2020).

    [111] C LIU, M Z ALAM, K PANG et al. Tunable Doppler shift using a time-varying epsilon-near-zero thin film near 1 550 nm. Optics Letters, 46, 3444-3447(2021).

    [112] K PANG, M Z ALAM, Y ZHOU et al. Adiabatic frequency conversion using a time-varying epsilon-near-zero metasurface. Nano Letters, 21, 5907-5913(2021).

    [113] C LIU, M Z ALAM, K PANG et al. Photon acceleration using a time-varying epsilon-near-zero metasurface. ACS Photonics, 8, 716-720(2021).

    [114] J BOHN, T S LUK, S HORSLEY et al. Spatiotemporal refraction of light in an epsilon-near-zero indium tin oxide layer: frequency shifting effects arising from interfaces. Optica, 8, 1532-1537(2021).

    [115] S VEZZOLI, V BRUNO, C DEVAULT et al. Optical time reversal from time-dependent epsilon-near-zero media. Physical Review Letters, 120, 043902(2018).

    [116] V BRUNO, C DEVAULT, S VEZZOLI et al. Negative refraction in time-varying strongly coupled plasmonic-antenna-epsilon-near-zero systems. Physical Review Letters, 124, 043902(2020).

    Heng WANG, Guixin LI, Ting MEI. Light-matter Interactions in Epsilon-near-zero Materials(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551308
    Download Citation