[2] PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes[J]. Cem Concr Res, 1999, 29(8): 1323–1329.
[3] PATHER B, EKOLU S O, QUAINOO H. Effects of aggregate types on acid corrosion attack upon fly–Ash geopolymer and Portland cement concretes–Comparative study[J]. Constr Build Mater, 2021, 313: 125468.
[4] HAGER I, SITARZ M, MRZ K. Fly-ash based geopolymer mortar for high-temperature application–Effect of slag addition[J]. J Clean Prod, 2021, 316: 128168.
[7] PEDROSA H C, REALES O M, REIS V D, et al. Hydration of Portland cement accelerated by C-S-H seeds at different temperatures[J]. Cem Concr Res, 2020, 129: 105978.
[9] JOHN E, MATSCHEI T, STEPHAN D. Nucleation seeding with calcium silicate hydrate–A review[J]. Cem Concr Res, 2018, 113: 74–85.
[10] REES C A, PROVIS J L, LUKEY G C, et al. The mechanism of geopolymer gel formation investigated through seeded nucleation[J]. Colloids Surf A Physicochem Eng Aspects, 2008, 318(1–3): 97–105.
[11] WALKLEY B, SAN NICOLAS R, SANI M A, et al. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders[J]. Dalton Trans, 2016, 45(13): 5521–5535.
[12] CHANG N, LI H, LIU W H, et al. Phase evolution and mechanical performance of red mud-gypsum waste derived activator composite cementitious materials exposed to various Ca/Si and Al/S ratios[J]. Constr Build Mater, 2024, 412: 134807.
[13] FIRDOUS R, HIRSCH T, KLIMM D, et al. Reaction of calcium carbonate minerals in sodium silicate solution and its role in alkali-activated systems[J]. Miner Eng, 2021, 165: 106849.
[14] ZHAO X H, LIU C Y, ZUO L M, et al. Investigation into the effect of calcium on the existence form of geopolymerized gel product of fly ash based geopolymers[J]. Cem Concr Compos, 2019, 103: 279–292.
[15] WANG W L, FAN C C, WANG B M, et al. Workability, rheology, and geopolymerization of fly ash geopolymer: Role of alkali content, modulus, and water–binder ratio[J]. Constr Build Mater, 2023, 367: 130357.
[16] FERNNDEZ-JIMNEZ A, PALOMO A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure[J]. Microporous Mesoporous Mater, 2005, 86(1–3): 207–214.
[17] YIN Y K, AI J J, LI F, et al. Synthesis of mesoporous sodalite from coal-fired slag for CO2 capture[J]. J Indian Chem Soc, 2024, 101(2): 101124.
[18] JEON D, JUN Y B, JEONG Y, et al. Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system[J]. Cem Concr Res, 2015, 67: 215–225.
[19] MILAUER V, HLAVEK P, KVRA F, et al. Micromechanical multiscale model for alkali activation of fly ash and metakaolin[J]. J Mater Sci, 2011, 46(20): 6545–6555.
[20] KLIMA K M, SCHOLLBACH K, BROUWERS H J H, et al. Enhancing the thermal performance of Class F fly ash-based geopolymer by sodalite[J]. Constr Build Mater, 2022, 314: 125574.
[21] JIAO X, LI H, ZHOU S, et al. Influence of Activators on the Properties of Fly Ash Geopolymer Under Early Applied Electric Field[J]. J Mater Sci Eng, 2022, 40(2): 328–332.
[22] ASSI L N, EDDIE DEAVER E, ZIEHL P. Effect of source and particle size distribution on the mechanical and microstructural properties of fly ash-based geopolymer concrete[J]. Constr Build Mater, 2018, 167: 372–380.
[23] KONG L J, FAN Z R, MA W C, et al. Effect of curing conditions on the strength development of alkali-activated mortar[J]. Crystals, 2021, 11(12): 1455.
[24] ZHANG J R, FU Y, WANG A, et al. Research on the mechanical properties and microstructure of fly ash-based geopolymers modified by molybdenum tailings[J]. Constr Build Mater, 2023, 385: 131530.
[25] EL HAFID K, HAJJAJI M. Geopolymerization of glass- and silicate-containing heated clay[J]. Constr Build Mater, 2018, 159: 598–609.
[26] ZHU H M, WU X Z, ZHANG Y W, et al. Fast setting and high early strength alkali-activated fly ash synthetized with pre-polymerized suspension combined with ultrafine fly ash at ambient temperature[J]. Case Stud Constr Mater, 2024, 20: e02939.
[27] AHMAD M R, CHEN B, YU J. A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash[J]. Compos Part B Eng, 2019, 168: 204–217.
[29] JUILLAND P, GALLUCCI E, FLATT R, et al. Dissolution theory applied to the induction period in alite hydration[J]. Cem Concr Res, 2010, 40(6): 831–844.
[30] TANG R, ZHANG J, WANG Z, et al. C-S-H Nano-seed and its promoting effect on cement hydration and hardening: A review[J]. Int Mater Rev, 2023, 2023,37(9):105–120.
[31] SHI S, LI H, ZHOU Q Z, et al. Alkali-activated fly ash cured with pulsed microwave and thermal oven: A comparison of reaction products, microstructure and compressive strength[J]. Cem Concr Res, 2023, 166: 107104.
[33] MAMAGHANI F A A, SALEM A, SALEM S. A novel technique for fabrication of rod-like shape zeolite LTA and hydroxysodalite by extrusion of bentonite powder: Effects of technical factors on structural characteristics[J]. Adv Powder Technol, 2023, 34(8): 104085.
[34] LI H Y, CHEN Y X, MOEEN M, et al. Effect of solvent composition on calcium–silicon ratio, particle size, and morphology of C-S-H nanomaterials and cement properties[J]. J Mater Civ Eng, 2023, 35(2): 0004584.
[36] BELLMANN F, SOWOIDNICH T, HORGNIES M, et al. Basic mechanisms of afwillite seeding for acceleration of tricalcium silicate hydration[J]. Cem Concr Res, 2020, 132: 106030.