[2] PROVIS J L, DEVENTER J S J V. Alkali Activated Materials: State-of-the-Art Reports [M]. Berlin: Springer Science & Business Media, 2013: 1–19.
[3] LOTHENBACH B, SCRIVENER K, SNELLINGS R. A practical Guide to Microstructural Analysis of Cementitious Materials [M]. Calabasas: CRC Press, 2018: 178–208.
[4] MITSUDA T, TAYLOR H F W. Normal and anomalous tobermorites[J]. Mineral Mag, 1978, 42(322): 229–235.
[5] BARNES P A. Applications of new methods and instrumentation in thermal analysis[J]. Thermochim Acta, 1987, 114(1): 0040603187802356.
[6] PRICE D, DOLLIMORE D, FATEMI N S, et al. Mass spectrometric determination of kinetic parameters for solid state decomposition reactions. Part 1. Method; calcium oxalate decomposition[J]. Thermochim Acta, 1980, 42(3): 323–332.
[7] HEIDE K, GERTH K, BCHEL G, et al. EGA—A fingerprint characterization of minerals and rocks[J]. J Therm Anal, 1997, 48(1): 73–81.
[8] OZAWA T. Thermal analysis—Review and prospect[J]. Thermochim Acta, 2000, 355(1/2): 35–42.
[9] KAMRUDDIN M, AJIKUMAR P K, DASH S, et al. Thermogravimetry-evolved gas analysis-mass spectrometry system for materials research[J]. Bull Mater Sci, 2003, 26(4): 449–460.
[10] TSUGOSHI T, NAGAOKA T, HINO K, et al. Evolved gas analysis-mass spectrometry using skimmer interface and ion attachment mass spectrometry[J]. J Therm Anal Calorim, 2005, 80(3): 787–789.
[11] GREENSPAN L. Humidity fixed points of binary saturated aqueous solutions[J]. J Res Natl Bur Stand Sect A Phys Chem, 1977, 81A(1): 89.
[12] LI C Q, LI G Y, CHEN D, et al. The effects of diatomite as an additive on the macroscopic properties and microstructure of concrete[J]. Materials, 2023, 16(5): 1833.
[13] GOTO S, SUENAGA K, KADO T, et al. Calcium silicate carbonation products[J]. J Am Ceram Soc, 1995, 78(11): 2867–2872.
[14] MCCAULEY R A, JOHNSON L A. Decrepitation and thermal decomposition of dolomite[J]. Thermochim Acta, 1991, 185(2): 271–282.
[15] MARSH A T M, YUE Z L, DHANDAPANI Y, et al. Influence of limestone addition on sodium sulphate activated blast furnace slag cements[J]. Constr Build Mater, 2022, 360: 129527.
[16] ZHU X H, TANG D S, YANG K, et al. Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete[J]. Constr Build Mater, 2018, 175: 467–482.
[17] WANG S D, SCRIVENER K L. Hydration products of alkali activated slag cement[J]. Cem Concr Res, 1995, 25(3): 561–571.
[18] ZHU X H, LUAN M Y, YANG K, et al. Using GGBS: Clarification of the importance of relative humidity at storage on reactivity of GGBS[J]. J Adv Concr Technol, 2022, 20(11): 663–675.
[19] ZHU X H, ZHANG Z, LUAN M Y, et al. Temperature-sensitively dissolving of GGBS in neutral and alkali media[J]. Constr Build Mater, 2024, 418: 135353.
[20] ZHANG Z D, SCHERER G W. Physical and chemical effects of isopropanol exchange in cement-based materials[J]. Cem Concr Res, 2021, 145: 106461.
[21] XIA H D, WEI K. Equivalent characteristic spectrum analysis in TG–MS system[J]. Thermochim Acta, 2015, 602: 15–21.
[22] ZHU X H, LUAN M Y, TANG D S, et al. Understanding the setting behaviours of alkali-activated slag from the dissolution-precipitation point of view[J]. Cem Concr Compos, 2024, 148: 105474.
[23] LI R B, HUANG Q, WEI K, et al. Quantitative analysis by thermogravimetry-mass spectrum analysis for reactions with evolved gases[J]. J Vis Exp, 2018(140): 58233.
[24] MACIEJEWSKI M, BAIKER A. Quantitative calibration of mass spectrometric signals measured in coupled TA-MS system[J]. Thermochim Acta, 1997, 295(1/2): 95–105.