• High Power Laser Science and Engineering
  • Vol. 8, Issue 2, 02000e25 (2020)
Yongguang Zhao1、*, Li Wang2, Weidong Chen2, Jianlei Wang3, Qingsong Song3, Xiaodong Xu3, Ying Liu3, Deyuan Shen3, Jun Xu4, Xavier Mateos5, Pavel Loiko6, Zhengping Wang7, Xinguang Xu7, Uwe Griebner2, and Valentin Petrov2
Author Affiliations
  • 1Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489Berlin, Germany
  • 2Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489Berlin, Germany
  • 3Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, Xuzhou221116, China
  • 4School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai200092, China
  • 5Departament Química Física i Inorgànica, Física i Cristal.lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Universitat Rovira i Virgili, Campus Sescelades, E-43007Tarragona, Spain
  • 6Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen, 6 Boulevard du Maréchal Juin, 14050Caen Cedex 4, France
  • 7State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan250100, China
  • show less
    DOI: 10.1017/hpl.2020.25 Cite this Article Set citation alerts
    Yongguang Zhao, Li Wang, Weidong Chen, Jianlei Wang, Qingsong Song, Xiaodong Xu, Ying Liu, Deyuan Shen, Jun Xu, Xavier Mateos, Pavel Loiko, Zhengping Wang, Xinguang Xu, Uwe Griebner, Valentin Petrov. 35 W continuous-wave Ho:YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e25 Copy Citation Text show less
    (a) Photograph of the end facet of the Ho:YAG SCF. (b) Schematic of the Ho:YAG SCF laser: L1–L3, lenses with , 100 and 150 mm, respectively; M1, M2, bending mirrors; M3, dichroic mirror; PM, pump mirror; OC, output coupler.
    Fig. 1. (a) Photograph of the end facet of the Ho:YAG SCF. (b) Schematic of the Ho:YAG SCF laser: L1–L3, lenses with , 100 and 150 mm, respectively; M1, M2, bending mirrors; M3, dichroic mirror; PM, pump mirror; OC, output coupler.
    (a) Laser performance of the Ho:YAG SCF laser with different OCs and (b) the corresponding optical spectra. The gray curves are the calculated gain spectra of Ho:YAG[17] with different population inversion parameters .
    Fig. 2. (a) Laser performance of the Ho:YAG SCF laser with different OCs and (b) the corresponding optical spectra. The gray curves are the calculated gain spectra of Ho:YAG[17] with different population inversion parameters .
    Caird plot for the high-power Ho:YAG SCF laser: inverse slope efficiency with respect to the inverse output-coupling loss, i.e., .
    Fig. 3. Caird plot for the high-power Ho:YAG SCF laser: inverse slope efficiency with respect to the inverse output-coupling loss, i.e., .
    Beam intensity profiles recorded at different output powers with ; is the calculated beam ellipticity from each image.
    Fig. 4. Beam intensity profiles recorded at different output powers with ; is the calculated beam ellipticity from each image.
    (a) The measured -factor of the Ho:YAG SCF laser () at different absorbed pump powers and (b) a typical measurement at 7 W output laser power.
    Fig. 5. (a) The measured -factor of the Ho:YAG SCF laser () at different absorbed pump powers and (b) a typical measurement at 7 W output laser power.
    Yongguang Zhao, Li Wang, Weidong Chen, Jianlei Wang, Qingsong Song, Xiaodong Xu, Ying Liu, Deyuan Shen, Jun Xu, Xavier Mateos, Pavel Loiko, Zhengping Wang, Xinguang Xu, Uwe Griebner, Valentin Petrov. 35 W continuous-wave Ho:YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e25
    Download Citation