Xin Li, Cheng-Li Zhao, Yang-Yang Liu. Distinguishing node propagation influence by expected index of finite step propagation range [J]. Acta Physica Sinica, 2020, 69(2): 028901-1

Search by keywords or author
- Acta Physica Sinica
- Vol. 69, Issue 2, 028901-1 (2020)

Fig. 1. A simple network example: (a) The network diagram; (b) the corresponding propagation tree of (a).一个简单网络例子 (a)网络图; (b)图(a)对应的传播树

Fig. 2. (a) Approximate propagation expectation and the degree of propagation over time for different simulation times; (b) variance of the approximate propagation expectation and the degree of propagation of different simulation times.(a)不同仿真次数下的近似传播期望值和传播度随时间的变化; (b)不同仿真次数的近似传播期望值与传播度的方差变化

Fig. 3. Changes of the 4th degree of propagation (normali-zed) of network node in Fig. 1 with the propagation pro-bability.
图1 中的网络各节点4阶传播度(归一化)随传播概率变化

Fig. 4. Flow chart of node influence maximization algorithm based on propagation degree.基于传播度的节点影响力极大化算法流程图
![(a)−(c): Respectively reflects the relationship between the propagation capacity and degree, second-order propagation, and third-order propagation of several nodes randomly selected by the Deezer network, whereβ = 0.06; (d)−(f): Respectively reflects the global propagation probability of randomly selected nodes by the Deezer network (see reference[12]) Correspondence with degrees, second-order propagation, and third-order propagation, where β = 0.12 (here, it is not difficult to find through the simulation experiments that the percolation threshold of the network is between 0.06 and 0.12)(a)−(c) 分别反映了Deezer网络随机挑选若干节点的传播能力与度, 二阶传播度, 三阶传播度的关系, 其中β = 0.06; (d)−(f) 分别反映了Deezer网络随机挑选若干节点全局传播概率(参见文献[12])与度, 二阶传播度, 三阶传播度的对应情况, 其中β = 0.12(这里通过仿真实验不难发现该网络的渗流阈值介于0.06和0.12之间)](/Images/icon/loading.gif)
Fig. 5. (a)−(c): Respectively reflects the relationship between the propagation capacity and degree, second-order propagation, and third-order propagation of several nodes randomly selected by the Deezer network, whereβ = 0.06; (d)−(f): Respectively reflects the global propagation probability of randomly selected nodes by the Deezer network (see reference[12]) Correspondence with degrees, second-order propagation, and third-order propagation, where β = 0.12 (here, it is not difficult to find through the simulation experiments that the percolation threshold of the network is between 0.06 and 0.12)
(a)−(c) 分别反映了Deezer网络随机挑选若干节点的传播能力与度, 二阶传播度, 三阶传播度的关系, 其中β = 0.06; (d)−(f) 分别反映了Deezer网络随机挑选若干节点全局传播概率(参见文献[12])与度, 二阶传播度, 三阶传播度的对应情况, 其中β = 0.12(这里通过仿真实验不难发现该网络的渗流阈值介于0.06和0.12之间)

Fig. 6. Kendall’s tau coefficient for different propagation probabilities, second-order, third-order propagation and simulation propagation ability.不同传播概率下度, 二阶、三阶传播度与仿真传播能力的kendall’s tau系数

Fig. 7. (a) The relationship between the second-order propagation degree and the global propagation probability p in the case of the Email-Enron network with a propagation probability of 0.02; (b) the kendall's tau coefficient of each indicator with different propagation rates and propagation capabilities.
(a)在Email-Enron网络中, 传播概率为0.02的情况下二阶传播度和全局传播概率p 的关系; (b)各指标在不同概率下与传播能力的kendall’s tau系数

Fig. 8. (a) The relationship between the second-order propagation degree and the global propagation probability p in the case of a Facebook network with a propagation probability of 0.09; (b) the kendall's tau coefficient of each indicator with different propagation rates and propagation capabilities.
(a)在Facebook网络中, 传播概率为0.09的情况下二阶传播度和全局传播概率p 的关系; (b)各指标在不同概率下与传播能力的kendall’s tau系数

Fig. 9. In the Deezer network, (a) the variation of the propagation range with the number of selected seed nodes under different algorithms; (b) the variation of the global propagation probability with the number of seed nodes under different algorithms. The candidate nodes are 9792 nodes with a degree of 6, 7 and 8.在Deezer网络中(a)不同算法下传播范围随所选种子节点数量的变化和(b)不同算法下全局传播概率随种子节点数量的变化, 其中候选节点为度为6, 7, 8的9792个节点

Fig. 10. (a), (b), and (c), (d), respectively, compare the propagation performance of Email-Enron, the selected seed node of the Facebook network under different algorithms.(a), (b)和(c), (d)分别比较了Email-Enron, Facebook网络在不同算法下所选种子节点的传播性能
|
Table 1.
Joint probability algorithm
联合概率算法
|
Table 2.
Pseudocode of the algorithm flow for s order progpagation of the seed node.
种子节点s阶传播度的算法流程伪代码
Set citation alerts for the article
Please enter your email address