• Matter and Radiation at Extremes
  • Vol. 6, Issue 5, 054401 (2021)
Z. Chen1、*, X. Na1, C. B. Curry1、2, S. Liang1, M. French3, A. Descamps1、4, D. P. DePonte1, J. D. Koralek1, J. B. Kim1, S. Lebovitz1、5, M. Nakatsutsumi6, B. K. Ofori-Okai1, R. Redmer3, C. Roedel7、8, M. Schörner3, S. Skruszewicz9, P. Sperling6, S. Toleikis9, M. Z. Mo1, and S. H. Glenzer1
Author Affiliations
  • 1SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
  • 2University of Alberta, Edmonton, Alberta T6G 1H9, Canada
  • 3Institute of Physics, University of Rostock, D-18051 Rostock, Germany
  • 4Aeronautics and Astronautics Department, Stanford University, Stanford, California 94305, USA
  • 5Northwestern University, Evanston, Illinois 60208, USA
  • 6European XFEL, 22869 Schenefeld, Germany
  • 7Friedrich Schiller University Jena, 07743 Jena, Germany
  • 8Technical University Darmstadt, 64289 Darmstadt, Germany
  • 9Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
  • show less
    DOI: 10.1063/5.0043726 Cite this Article
    Z. Chen, X. Na, C. B. Curry, S. Liang, M. French, A. Descamps, D. P. DePonte, J. D. Koralek, J. B. Kim, S. Lebovitz, M. Nakatsutsumi, B. K. Ofori-Okai, R. Redmer, C. Roedel, M. Schörner, S. Skruszewicz, P. Sperling, S. Toleikis, M. Z. Mo, S. H. Glenzer. Observation of a highly conductive warm dense state of water with ultrafast pump–probe free-electron-laser measurements[J]. Matter and Radiation at Extremes, 2021, 6(5): 054401 Copy Citation Text show less

    Abstract

    The electrical conductivity of water under extreme temperatures and densities plays a central role in modeling planetary magnetic fields. Experimental data are vital to test theories of high-energy-density water and assess the possible development and presence of extraterrestrial life. These states are also important in biology and chemistry studies when specimens in water are confined and excited using ultrafast optical or free-electron lasers (FELs). Here we utilize femtosecond optical lasers to measure the transient reflection and transmission of ultrathin water sheet samples uniformly heated by a 13.6 nm FEL approaching a highly conducting state at electron temperatures exceeding 20 000 K. The experiment probes the trajectory of water through the high-energy-density phase space and provides insights into changes in the index of refraction, charge carrier densities, and AC electrical conductivity at optical frequencies. At excitation energy densities exceeding 10 MJ/kg, the index of refraction falls to n = 0.7, and the thermally excited free-carrier density reaches ne = 5 × 1027 m-3, which is over an order of magnitude higher than that of the electron carriers produced by direct photoionization. Significant specular reflection is observed owing to critical electron density shielding of electromagnetic waves. The measured optical conductivity reaches 2 × 104 S/m, a value that is one to two orders of magnitude lower than those of simple metals in a liquid state. At electron temperatures below 15 000 K, the experimental results agree well with the theoretical calculations using density-functional theory/molecular-dynamics simulations. With increasing temperature, the electron density increases and the system approaches a Fermi distribution. In this regime, the conductivities agree better with predictions from the Ziman theory of liquid metals.
    R=RpeakIRFELIRminIRmaxIRmin,

    View in Article

    T=ITFELITvCNorm,

    View in Article

    σ=i[1(n+ik)2]ϵ0ω,

    View in Article

    ΔE=300KTepeakCe(Te)dTe.

    View in Article

    σr=nee2τme[1+(ωτ)2],

    View in Article

    n(Te)=μEmaxfTe(E)gTe(E)dE,

    View in Article

    υei=nime2pF302kF4πe2Q2+ke22Q3Sii(Q)dQ2π,

    View in Article

    Sii(Q)=1Np=1Nq=1NeiQrpq,

    View in Article

    Z. Chen, X. Na, C. B. Curry, S. Liang, M. French, A. Descamps, D. P. DePonte, J. D. Koralek, J. B. Kim, S. Lebovitz, M. Nakatsutsumi, B. K. Ofori-Okai, R. Redmer, C. Roedel, M. Schörner, S. Skruszewicz, P. Sperling, S. Toleikis, M. Z. Mo, S. H. Glenzer. Observation of a highly conductive warm dense state of water with ultrafast pump–probe free-electron-laser measurements[J]. Matter and Radiation at Extremes, 2021, 6(5): 054401
    Download Citation