• Chinese Journal of Lasers
  • Vol. 51, Issue 7, 0701013 (2024)
Huagang Liu, Kaiming Ruan, Jinhui Li, Fei Shi, Jianhong Huang, and Wenxiong Lin*
Author Affiliations
  • Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian , China
  • show less
    DOI: 10.3788/CJL231524 Cite this Article Set citation alerts
    Huagang Liu, Kaiming Ruan, Jinhui Li, Fei Shi, Jianhong Huang, Wenxiong Lin. High‑Repetition‑Rate Continuously Tunable Ultra‑Short Pulse Laser Across Range from 192 nm to 300 nm[J]. Chinese Journal of Lasers, 2024, 51(7): 0701013 Copy Citation Text show less
    References

    [1] Yang W X, Zhao Y K, Wu Y Y et al. Deep-UV emission at 260 nm from MBE-grown AlGaN/AlN quantum-well structures[J]. Journal of Crystal Growth, 512, 213-218(2019).

    [2] Shatalov M, Sun W H, Lunev A et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%[J]. Applied Physics Express, 5, 082101(2012).

    [3] Huber B, Pres S, Wittmann E et al. Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate[J]. The Review of Scientific Instruments, 90, 113103(2019).

    [4] Ran Q D, Hao L, Kun L et al. High power DUV laser for bright high harmonic generation in gas[C](2021).

    [5] Consani C, Auböck G, van Mourik F et al. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy[J]. Science, 339, 1586-1589(2013).

    [6] Liang X, Shen Q H, Shao J Z et al. Discharge-pumped excimer laser technologies and applications[J]. Laser & Optoelectronics Progress, 60, 1900006(2023).

    [7] Zhao Z G, Xuan H W, Wang J C et al. Research progresses on vacuum-ultraviolet 193-nm band solid-state lasers[J]. Acta Optica Sinica, 42, 1134010(2022).

    [8] Dou W, Hou S S, Zheng Z Y et al. Development of all solid state single longitudinal mode 273 nm deep-ultraviolet laser[J]. Chinese Journal of Lasers, 50, 2301006(2023).

    [9] Meng X H, Liu H G, Huang J H et al. Generation of tunable ultrafast ultraviolet third harmonic by collinear compensation of group-velocity mismatch[J]. Optics Communications, 353, 96-100(2015).

    [10] Zhao Z B, Chen H, Xu D X et al. LD end-pumped all-solid-state acousto-optical Q-switched 228.5 nm deep ultraviolet laser[J]. Chinese Journal of Lasers, 49, 0315001(2022).

    [11] Liu H G, Hu M L, Liu B W et al. High power ultraviolet laser source based on photonic crystal fiber femtosecond laser system[J]. Chinese Journal of Lasers, 36, 2812-2816(2009).

    [12] Nebel A, Beigang R. External frequency conversion of cw mode-locked Ti: Al2O3 laser radiation[J]. Optics Letters, 16, 1729-1731(1991).

    [13] Liu H G, Hu M L, Liu B W et al. Compact high-power multiwavelength photonic-crystal-fiber-based laser source of femtosecond pulses in the infrared-visible-ultraviolet range[J]. Journal of the Optical Society of America B, 27, 2284-2289(2010).

    [14] Wang R, Teng H, Wang N et al. Tunable deep ultraviolet single-longitudinal-mode laser generated with Ba1-xB2-y-zO4SixAlyGaz crystal[J]. Optics Letters, 39, 2105-2108(2014).

    [15] Bradler M, Nielsen F D, Eckert C E et al. A broad and tunable 250- to 430-nm source for microscopy and lifetime measurements by frequency doubling of a 78-MHz-picosecond white-light laser[J]. Applied Physics B, 116, 875-882(2014).

    [16] Schriever C, Lochbrunner S, Krok P et al. Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system[J]. Optics Letters, 33, 192-194(2008).

    [17] Rotermund F, Petrov V. Generation of the fourth harmonic of a femtosecond Ti: sapphire laser[J]. Optics Letters, 23, 1040-1042(1998).

    [18] Zhu J F, Ling W J, Wang Z H et al. High-energy picosecond near-vacuum ultraviolet pulses generated by sum-frequency mixing of an amplified Ti: sapphire laser[J]. Applied Optics, 46, 6228-6231(2007).

    [19] Petrov V, Rotermund F, Noack F et al. Frequency conversion of Ti: sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals[J]. IEEE Journal of Selected Topics in Quantum Electronics, 5, 1532-1542(1999).

    [20] Zhang H, Wang G, Guo L et al. 175 to 210 nm widely tunable deep-ultraviolet light generation based on KBBF crystal[J]. Applied Physics B, 93, 323-326(2008).

    [21] Kanai T, Kanda T, Sekikawa T et al. Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti∶sapphire laser[J]. Journal of the Optical Society of America B, 21, 370-375(2004).

    [22] Homann C, Lang P, Riedle E. Generation of 30 fs pulses tunable from 189 to 240 nm with an all-solid-state setup[J]. Journal of the Optical Society of America B, 29, 2765-2769(2012).

    [23] Gu C L, Hu M L, Fan J T et al. High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator[J]. Optics Express, 23, 6181-6186(2015).

    [24] Ghotbi M, Esteban-Martin A, Ebrahim-Zadeh M. Tunable high-repetition-rate femtosecond pulse generation in the ultraviolet[J]. Optics Letter, 33, 345-347(2008).

    [25] Meguro T, Caughey T, Wolf L et al. Solid-state tunable deep-ultraviolet laser system from 198 to 300 nm[J]. Optics Letters, 19, 102-104(1994).

    Huagang Liu, Kaiming Ruan, Jinhui Li, Fei Shi, Jianhong Huang, Wenxiong Lin. High‑Repetition‑Rate Continuously Tunable Ultra‑Short Pulse Laser Across Range from 192 nm to 300 nm[J]. Chinese Journal of Lasers, 2024, 51(7): 0701013
    Download Citation