• Acta Photonica Sinica
  • Vol. 51, Issue 1, 0151105 (2022)
Mingxin LV1、2、*, Yipeng ZHANG1、3, Jianlang HE1、2, Xiaopeng HU1、2, and Yong ZHANG1、2
Author Affiliations
  • 1National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China
  • 2College of Engineering and Applied Sciences,Nanjing University,Nanjing 210093,China
  • 3School of Physics,Nanjing University,Nanjing 210093,China
  • show less
    DOI: 10.3788/gzxb20225101.0151105 Cite this Article
    Mingxin LV, Yipeng ZHANG, Jianlang HE, Xiaopeng HU, Yong ZHANG. Research Progress of Vortex Beam Laser(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151105 Copy Citation Text show less
    References

    [1] A EINSTEIN. On the quantum theory of radiation. Physikalische Zeitschrift, 18, 121-128(1917).

    [2] L ALLEN, M W BEIJERSBERGEN, R J SPREEUW et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185-8189(1992).

    [3] K TOYODA, K MIYAMOTO, N AOKI et al. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Letters, 12, 3645-3649(2012).

    [4] A AMBROSIO, L MARRUCCI, F BORBONE et al. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nature Communications, 3, 989(2012).

    [5] G GIBSON, J COURTIAL, M PADGETT et al. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 12, 5448-5456(2004).

    [6] A E WILLNER, Y REN, G XIE et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Philosophical Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences, 375, 20150439(2017).

    [7] D Z WEI, Y Z ZHU, W H ZHONG et al. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal. Applied Physics Letters, 110, 261104(2017).

    [8] A WANG, L ZHU, S CHEN et al. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Optics Express, 24, 11716-11726(2016).

    [9] J HAMAZAKI, R MORITA, K CHUJO et al. Optical-vortex laser ablation. Optics Express, 18, 2144-2151(2010).

    [10] A ASHKIN, J M DZIEDZIC, J E BJORKHOLM et al. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11, 288-290(1986).

    [11] A T O'NEIL, I MACVICAR, L ALLEN et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Physical Review Letters, 88, 053601(2002).

    [12] X FANG, G YANG, D WEI et al. Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO(3) crystal. Optics Letters, 41, 1169-1172(2016).

    [13] T HONG, J MILLER, H YAMAMOTO et al. Effects of mirror aberrations on Laguerre-Gaussian beams in interferometric gravitational-wave detectors. Physical Review D, 84, 102001(2011).

    [14] Z X LIU, Y Y LIU, Y G KE et al. Geometric phase Doppler effect: when structured light meets rotating structured materials. Optics Express, 25, 11564-11573(2017).

    [15] I A LITVIN, A FORBES. Bessel-Gauss resonator with internal amplitude filter. Optics Communications, 281, 2385-2392(2008).

    [16] B SEPHTON, A DUDLEY, A FORBES. Revealing the radial modes in vortex beams. Applied Optics, 55, 7830-7835(2016).

    [17] J B BENTLEY, J A DAVIS, M A BANDRES et al. Generation of helical Ince-Gaussian beams with a liquid-crystal display. Optics Letters, 31, 649-651(2006).

    [18] Y J SHEN, Z Y WANG, X FU et al. SU(2) Poincare sphere: A generalized representation for multidimensional structured light. Physical Review A, 102, 031501(2020).

    [19] M W BEIJERSBERGEN, R P C COERWINKEL, M KRISTENSEN et al. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 112, 321-327(1994).

    [20] S S OEMRAWSINGH, J AVAN HOUWELINGEN, E R ELIEL et al. Production and characterization of spiral phase plates for optical wavelengths. Applied Optics, 43, 688-694(2004).

    [21] L MARRUCCI. The q-plate and its future. Journal of Nanophotonics, 7, 078598(2013).

    [22] Y LIU, Y KE, J ZHOU et al. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Scientific Reports, 7, 44096(2017).

    [23] Z LIU, Y LIU, Y KE et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere. Photonics Research, 5, 15-21(2016).

    [24] W X SHU, X H LING, X Q FU et al. Polarization evolution of vector beams generated by q-plates. Photonics Research, 5, 64-72(2017).

    [25] S CHELKOWSKI, S HILD, A FREISE. Prospects of higher-order Laguerre-Gauss modes in future gravitational wave detectors. Physical Review D, 79, 122002(2009).

    [26] W T YU, Z H JI, D S DONG et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy. Laser & Photonics Reviews, 10, 147-152(2016).

    [27] M KRENN, M MALIK, M ERHARD et al. Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes. Philosophical Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences, 375, 20150442(2017).

    [28] Y F CHEN, Y P LAN. Dynamics of the Laguerre Gaussian TEM0,l* mode in a solid-state laser. Physical Review A, 63, 063807(2001).

    [29] J E BISSON, Y SENATSKY, K I UEDA. Generation of Laguerre-Gaussian modes in Nd : YAG laser using diffractive optical pumping. Laser Physics Letters, 2, 327-333(2005).

    [30] D J KIM, J W KIM. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser. Optics Letters, 40, 399-402(2015).

    [31] D LIN, J M DANIEL, W A CLARKSON. Controlling the handedness of directly excited Laguerre-Gaussian modes in a solid-state laser. Optics Letters, 39, 3903-3906(2014).

    [32] A ITO, Y KOZAWA, S SATO. Generation of hollow scalar and vector beams using a spot-defect mirror. Journal of the Optical Society of America A-Optics Image Science and Vision, 27, 2072-2077(2010).

    [33] D NAIDOO, K AïT-AMEUR, M BRUNEL et al. Intra-cavity generation of superpositions of Laguerre–Gaussian beams. Applied Physics B, 106, 683-690(2011).

    [34] D J KIM, J W KIM, W A CLARKSON. Q-switched Nd:YAG optical vortex lasers. Optics Express, 21, 29449-29454(2013).

    [35] S NGCOBO, K AIT-AMEUR, N PASSILLY et al. Exciting higher-order radial Laguerre-Gaussian modes in a diode-pumped solid-state laser resonator. Applied Optics, 52, 2093-2101(2013).

    [36] M P THIRUGNANASAMBANDAM, Y SENATSKY, K UEDA. Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser. Laser Physics Letters, 7, 637-643(2010).

    [37] E ABRAMOCHKIN, N LOSEVSKY, V VOLOSTNIKOV. Generation of spiral-type laser beams. Optics Communications, 141, 59-64(1997).

    [38] R ORON, N DAVIDSON, A A FRIESEM et al. Efficient formation of pure helical laser beams. Optics Communications, 182, 205-208(2000).

    [39] A J CALEY, M J THOMSON, J S LIU et al. Diffractive optical elements for high gain lasers with arbitrary output beam profiles. Optics Express, 15, 10699-10704(2007).

    [40] S NGCOBO, I LITVIN, L BURGER et al. A digital laser for on-demand laser modes. Nature Communications, 4, 2289(2013).

    [41] D NAIDOO, F S ROUX, A DUDLEY et al. Controlled generation of higher-order Poincare sphere beams from a laser. Nature Photonics, 10, 327-332(2016).

    [42] D Z WEI, Y CHENG, R NI et al. Generating controllable Laguerre-Gaussian laser modes through intracavity spin-orbital angular momentum conversion of light. Physical Review Applied, 11, 014038(2019).

    [43] H SROOR, Y W HUANG, B SEPHTON et al. High-purity orbital angular momentum states from a visible metasurface laser. Nature Photonics, 14, 498-503(2020).

    [44] M MARTINELLI, J A O HUGUENIN, P NUSSENZVEIG et al. Orbital angular momentum exchange in an optical parametric oscillator. Physical Review A, 70, 013812(2004).

    [45] K MIYAMOTO, S MIYAGI, M YAMADA et al. Optical vortex pumped mid-infrared optical parametric oscillator. Optics Express, 19, 12220-12226(2011).

    [46] T YUSUFU, Y TOKIZANE, M YAMADA et al. Tunable 2-μm optical vortex parametric oscillator. Optics Express, 20, 23666-23675(2012).

    [47] A ABULIKEMU, T YUSUFU, R MAMUTI et al. Widely-tunable vortex output from a singly resonant optical parametric oscillator. Optics Express, 23, 18338-18344(2015).

    [48] S ARAKI, K SUZUKI, S NISHIDA et al. Ultra-broadband tunable (0.67-2.57 µm) optical vortex parametric oscillator. Japanese Journal of Applied Physics, 56, 012701(2017).

    [49] T YUSUFU, S NIU, P TUERSUN et al. Tunable 3 µm optical vortex parametric oscillator. Japanese Journal of Applied Physics, 57, 122701(2018).

    [50] S NIU, S WANG, M ABABAIKE et al. Tunable near- and mid-infrared (1.36–1.63 µm and 3.07–4.81 µm) optical vortex laser source. Laser Physics Letters, 17, 045402(2020).

    [51] A AADHI, G K SAMANTA, S C KUMAR et al. Controlled switching of orbital angular momentum in an optical parametric oscillator. Optica, 4, 349-355(2017).

    [52] D WEI, P CHEN, X HU et al. Generations of high efficiency, purityhigh, and broadband Laguerre-Gaussian modes from a Janus optical parametric oscillator, arXiv, 2004.12384(2020).

    [53] B A SUN, A T WANG, L X XU et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating. Optics Letters, 37, 464-466(2012).

    [54] M KOYAMA, A SHIMOMURA, K MIYAMOTO et al. Frequency-doubling of an optical vortex output from a stressed Yb-doped fiber amplifier. Applied Physics B-Lasers and Optics, 116, 249-254(2014).

    [55] W ZHANG, K WEI, L HUANG et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating. Optics Express, 24, 19278-19285(2016).

    [56] T WANG, F WANG, F SHI et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler. Journal of Lightwave Technology, 35, 2161-2166(2017).

    [57] S WANG, Z C ZHANG, Y J WU et al. Vortex generation from a fiber laser by a polarization rotation technique. Laser Physics Letters, 18, 035301(2021).

    [58] B HUANG, L L YANG, L DU et al. Highly efficient vectorial fiber laser with switchable output. IEEE Photonics Technology Letters, 29, 1852-1855(2017).

    [59] Y F CHEN, Y P LAN. Laguerre-Gaussian modes in a double-end-pumped microchip laser: superposition and competition. Journal of Optics B-Quantum and Semiclassical Optics, 3, 146-151(2001).

    [60] P MIAO, Z ZHANG, J SUN et al. Orbital angular momentum microlaser. Science, 353, 464-467(2016).

    [61] Z L ZHANG, K GUI, C M ZHAO et al. Direct generation of vortex beam with a dual-polarization microchip laser. IEEE Photonics Technology Letters, 31, 1221-1224(2019).

    [62] M A AHMED, A VOSS, M M VOGEL et al. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb : YAG thin-disk lasers. Optics Letters, 32, 3272-3274(2007).

    [63] W E HAYENGA, M PARTO, J REN et al. Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points. ACS Photonics, 6, 1895-1901(2019).

    [64] K G COGNéE, H M DOELEMAN, P LALANNE et al. Generation of pure OAM beams with a single state of polarization by antenna-decorated microdisk resonators. ACS Photonics, 7, 3049-3060(2020).

    [65] X MA, S ZHENG, J LIU et al. Design of a single-mode directly modulated orbital angular momentum laser. Chinese Optics Letters, 19, 081401(2021).

    Mingxin LV, Yipeng ZHANG, Jianlang HE, Xiaopeng HU, Yong ZHANG. Research Progress of Vortex Beam Laser(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151105
    Download Citation