[1] Xu D Y[M]. Multi-dimensional optical storage(2016).
[2] Trelles O, Prins P, Snir M et al. Big data, but are we ready?[J]. Nature Reviews Genetics, 12, 224(2011).
[3] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 3, e177(2014).
[6] Fleischer A S. Cooling our insatiable demand for data[J]. Science, 370, 783-784(2020).
[8] Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 71, 882-884(1997).
[10] Gu M, Zhang Q M, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 1, 16070(2016).
[11] Parisini T. Advanced control systems for data storage on magnetic tape: a long-lasting success story[J]. IEEE Control Systems Magazine, 42, 8-11(2022).
[12] Zheng C X. Research progress of optical storage technology[J]. China CIO News, 20-23(2009).
[13] Gu M, Li X P. The road to multi-dimensional bit-by-bit optical data storage[J]. Optics and Photonics News, 21, 28-33(2010).
[14] Liu Z W, Lee H, Xiong Y et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 315, 1686(2007).
[15] van de Nes A S, Braat J M, Pereira S F. High-density optical data storage[J]. Reports on Progress in Physics, 69, 2323-2363(2006).
[16] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 245, 843-845(1989).
[17] Li X P, Chon J W M, Wu S H et al. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer[J]. Optics Letters, 32, 277-279(2007).
[18] Buse K, Adibi A, Psaltis D. Non-volatile holographic storage in doubly doped lithium niobate crystals[J]. Nature, 393, 665-668(1998).
[19] Shimotsuma Y, Kazansky P G, Qiu J R et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 91, 247405(2003).
[20] Zhang J Y, Gecevičius M, Beresna M et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 112, 033901(2014).
[21] Wang L, Fan H, Li Z Z et al. Fabrication of time capsules by femtosecond laser-induced birefringence (Invited)[J]. Acta Photonica Sinica, 50, 0650105(2021).
[22] Yan Z, Gao J C, Beresna M et al. Near-field mediated 40 nm in-volume glass fabrication by femtosecond laser[J]. Advanced Optical Materials, 10, 2101676(2022).
[23] Shimotsuma Y, Sakakura M, Kazansky P G et al. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Advanced Materials, 22, 4039-4043(2010).
[24] Fedotov S S, Lipatiev A S, Presniakov M Y et al. Laser-induced cavities with a controllable shape in nanoporous glass[J]. Optics Letters, 45, 5424-5427(2020).
[25] Zhong M L, Fan P X. Applications of laser nano manufacturing technologies[J]. Chinese Journal of Lasers, 38, 0601001(2011).
[26] Sun H B, Xu Y, Juodkazis S et al. Arbitrary-lattice photonic crystals created by multiphoton microfabrication[J]. Optics Letters, 26, 325-327(2001).
[27] Zhang Y C, Jiang Q L, Long M Q et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications[J]. Opto-Electronic Science, 1, 220005(2022).
[28] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).
[29] Kaiser A, Rethfeld B, Vicanek M et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses[J]. Physical Review B, 61, 11437-11450(2000).
[30] Sudrie L, Couairon A, Franco M et al. Femtosecond laser-induced damage and filamentary propagation in fused silica[J]. Physical Review Letters, 89, 186601(2002).
[31] Yablonovitch E, Bloembergen N. Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media[J]. Physical Review Letters, 29, 907-910(1972).
[32] Stuart B C, Feit M D, Herman S et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 53, 1749-1761(1996).
[33] Tien A C, Backus S, Kapteyn H et al. Short-pulse laser damage in transparent materials as a function of pulse duration[J]. Physical Review Letters, 82, 3883-3886(1999).
[34] Gamaly E G[M]. Femtosecond laser-matter interaction: theory, experiments, and applications(2011).
[35] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).
[36] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[37] Huang M, Zhao F L, Cheng Y et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 3, 4062-4070(2009).
[38] Schiffrin A, Paasch-Colberg T, Karpowicz N et al. Optical-field-induced current in dielectrics[J]. Nature, 493, 70-74(2013).
[39] Sokolowski-Tinten K, von der Linde D. Generation of dense electron-hole plasmas in silicon[J]. Physical Review B, 61, 2643-2650(2000).
[40] Bellouard Y, Champion A, McMillen B et al. Stress-state manipulation in fused silica via femtosecond laser irradiation[J]. Optica, 3, 1285-1293(2016).
[41] Li Z Z, Wang L, Fan H A et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment[J]. Light: Science & Applications, 9, 41(2020).
[42] Streltsov A M, Borrelli N F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Optics Letters, 26, 42-43(2001).
[43] Shah L, Arai A Y, Eaton S M et al. Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate[J]. Optics Express, 13, 1999-2006(2005).
[44] Nolte S, Will M, Burghoff J et al. Ultrafast laser processing: new options for three-dimensional photonic structures[J]. Journal of Modern Optics, 51, 2533-2542(2004).
[45] Watanabe W, Asano T, Yamada K et al. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses[J]. Optics Letters, 28, 2491-2493(2003).
[46] Saliminia A, Nguyen N T, Nadeau M C et al. Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses[J]. Journal of Applied Physics, 93, 3724-3728(2003).
[47] Chan J W, Huser T R, Risbud S H et al. Waveguide fabrication in phosphate glasses using femtosecond laser pulses[J]. Applied Physics Letters, 82, 2371-2373(2003).
[48] Miura K, Qiu J R, Inouye H et al. Photowritten optical waveguides in various glasses with ultrashort pulse laser[J]. Applied Physics Letters, 71, 3329-3331(1997).
[49] Stoian R, D'Amico C, Bhuyan M K et al. Ultrafast laser photoinscription of large-mode-area waveguiding structures in bulk dielectrics[J]. Optics & Laser Technology, 80, 98-103(2016).
[50] Richter S, Heinrich M, Döring S et al. Formation of femtosecond laser-induced nanogratings at high repetition rates[J]. Applied Physics A, 104, 503-507(2011).
[51] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).
[52] Shimizu M, Sakakura M, Kanehira S et al. Formation mechanism of element distribution in glass under femtosecond laser irradiation[J]. Optics Letters, 36, 2161-2163(2011).
[53] Lei Y H, Wang H J, Skuja L et al. Ultrafast laser writing in different types of silica glass[J]. Laser & Photonics Reviews, 17, 2200978(2023).
[54] Streltsov A M, Borrelli N F. Study of femtosecond-laser-written waveguides in glasses[J]. Journal of the Optical Society of America B, 19, 2496-2504(2002).
[55] Shelby J E[M]. Introduction to glass science and technology(1997).
[56] Schaffer C B, García J F, Mazur E. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser[J]. Applied Physics A, 76, 351-354(2003).
[57] Stankevič V, Karosas J, Račiukaitis G et al. Investigation of the modifications properties in fused silica by the deep-focused femtosecond pulses[J]. Optics Express, 31, 4482-4496(2023).
[58] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser & Photonics Review, 2, 26-46(2008).
[59] Yu J P, Xu J, Dong Q N et al. Low-loss optofluidic waveguides in fused silica enabled by spatially shaped femtosecond laser assisted etching combined with carbon dioxide laser irradiation[J]. Optics & Laser Technology, 158, 108889(2023).
[60] Della Valle G, Osellame R, Laporta P. Micromachining of photonic devices by femtosecond laser pulses[J]. Journal of Optics A: Pure and Applied Optics, 11, 013001(2009).
[61] Mikutis M, Kudrius T, Šlekys G et al. High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams[J]. Optical Materials Express, 3, 1862-1871(2013).
[62] Dhomkar S, Henshaw J, Jayakumar H et al. Long-term data storage in diamond[J]. Science Advances, 2, e1600911(2016).
[63] Juodkazis S, Nishimura K. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 96, 166101(2006).
[64] Stankevič V, Račiukaitis G, Bragheri F et al. Laser printed nano-gratings: orientation and period peculiarities[J]. Scientific Reports, 7, 39989(2017).
[66] Buividas R, Gervinskas G, Tadich A et al. Phase transformation in laser-induced micro-explosion in olivine (Fe,Mg)2SiO4[J]. Advanced Engineering Materials, 16, 767-773(2014).
[67] Vailionis A, Gamaly E G, Mizeikis V et al. Evidence of superdense aluminium synthesized by ultrafast microexplosion[J]. Nature Communications, 2, 445(2011).
[68] Rapp L, Haberl B, Pickard C J et al. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion[J]. Nature Communications, 6, 7555(2015).
[69] Smillie L A, Niihori M, Rapp L et al. Exotic silicon phases synthesized through ultrashort laser-induced microexplosion: characterization with Raman microspectroscopy[J]. Physical Review Materials, 4, 093803(2020).
[71] Zhou G Y, Gu M. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal[J]. Optics Letters, 31, 2783-2785(2006).
[72] Zhou G Y, Gu M. Photonic band gaps and planar cavity of two-dimensional eightfold symmetric void-channel photonic quasicrystals[J]. Applied Physics Letters, 90, 201111(2007).
[73] Glezer E N, Milosavljevic M, Huang L et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 21, 2023-2025(1996).
[75] Kazansky P G, Inouye H, Mitsuyu T et al. Anomalous anisotropic light scattering in Ge-doped silica glass[J]. Physical Review Letters, 82, 2199-2202(1999).
[76] Bhardwaj V R, Simova E, Rajeev P P et al. Optically produced arrays of planar nanostructures inside fused silica[J]. Physical Review Letters, 96, 057404(2006).
[77] Rajeev P P, Gertsvolf M, Hnatovsky C et al. Transient nanoplasmonics inside dielectrics[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 40, S273-S282(2007).
[78] Liao Y, Ni J L, Qiao L L et al. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation[J]. Optica, 2, 329-334(2015).
[79] Richter S, Heinrich M, Döring S et al. Nanogratings in fused silica: formation, control, and applications[J]. Journal of Laser Applications, 24, 042008(2012).
[80] Dai Y, Wu G R, Lin X A et al. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica[J]. Optics Express, 20, 18072-18078(2012).
[81] Rudenko A, Colombier J P, Höhm S et al. Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin[J]. Scientific Reports, 7, 12306(2017).
[82] Liao Y, Pan W J, Cui Y et al. Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation[J]. Optics Letters, 40, 3623-3626(2015).
[83] Xu S A, Fan H A, Li Z Z et al. Ultrafast laser-inscribed nanogratings in sapphire for geometric phase elements[J]. Optics Letters, 46, 536-539(2021).
[84] Taylor R S, Hnatovsky C, Simova E et al. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass[J]. Optics Letters, 32, 2888-2890(2007).
[85] Kazansky P G, Zhang J, Gecevičius M et al. Recent advances in ultrafast laser nanostructuring: S-waveplate and eternal data storage[C], 1-2(2014).
[86] Lei Y H, Sakakura M, Wang L et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement[J]. Optica, 8, 1365-1371(2021).
[87] Lei Y H, Wang H J, Shayeganrad G et al. Ultrafast laser nanostructuring in transparent materials for beam shaping and data storage[J]. Optical Materials Express, 12, 3327-3355(2022).
[88] Sakakura M, Lei Y H, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Light: Science & Applications, 9, 15(2020).
[89] Wang H J, Lei Y H, Wang L et al. 100-layer error-free 5D optical data storage by ultrafast laser nanostructuring in glass[J]. Laser & Photonics Reviews, 16, 2100563(2022).
[90] Zhang Z Y, Liu Z C, Wu D Z. Prediction of melt pool temperature in directed energy deposition using machine learning[J]. Additive Manufacturing, 37, 101692(2021).
[91] Fedotov S S, Okhrimchuk A G, Lipatiev A S et al. 3-bit writing of information in nanoporous glass by a single sub-microsecond burst of femtosecond pulses[J]. Optics Letters, 43, 851-854(2018).
[92] Yan Z, Li P Y, Gao J C et al. Anisotropic nanostructure generated by a spatial-temporal manipulated picosecond pulse for multidimensional optical data storage[J]. Optics Letters, 46, 5485-5488(2021).