• Frontiers of Optoelectronics
  • Vol. 6, Issue 3, 297 (2013)
Yashar E. MONFARED*, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, and A. R. MONAJATI KASHANI
Author Affiliations
  • Department of Electrical Engineering, Shahre-rey Branch, Islamic Azad University, Tehran 1815163111, Iran
  • show less
    DOI: 10.1007/s12200-013-0336-8 Cite this Article
    Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Frontiers of Optoelectronics, 2013, 6(3): 297 Copy Citation Text show less
    References

    [1] Geraghty D F, Lee R B, Verdiell M, Ziari M, Mathur A, Vahala K J. Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(5): 1146-1155

    [2] Bhuiyan M N, Matsuura M, Nguyen Tan H, Kishi N. Polarizationinsensitive and widely tunable wavelength conversion for polarization shift keying signal based on four wave mixing in highly nonlinear fiber. Optics Express, 2010, 18(3): 2467-2476

    [3] Qasaimeh O. Theory of four-wave mixing wavelength conversion in quantum dot semiconductor optical amplifiers. IEEE Photonics Technology Letters, 2004, 16(4): 993-995

    [4] Bres C S, Zlatanovic S, Wiberg A O J, Radic S. Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber. Optics Express, 2011, 19(26): B621-B627

    [5] Ho M C, Marhic M E, Wong K Y K, Kazovsky L G. Narrowlinewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase. Journal of Lightwave Technology, 2002, 20(3): 469-476

    [6] Kanka J. Design of photonic crystal fibers with highly nonlinear glasses for four-wave-mixing based telecom applications. Optics Express, 2008, 16(25): 20395-20408

    [7] Cerqueira S A Jr, Boggio J M, Rieznik A A, Hernandez-Figueroa H E, Fragnito H L, Knight J C. Highly efficient generation of broadband cascaded four-wave mixing products. Optics Express, 2008, 16(4): 2816-2828

    [8] Zhang A, DemokanMS. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber. Optics Letters, 2005, 30(18): 2375-2377

    [9] Russell P. Photonic-crystal fibers. Journal of Lightwave Technology, 2006, 24(12): 4729-4749

    [10] Saitoh K, Florous N, Koshiba M. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Optics Express, 2005, 13(21): 8365-8371

    [11] Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion. Optics Express, 2003, 11(8): 843-852

    [12] Chow K K, Kikuchi K, Nagashima T, Hasegawa T, Ohara S, Sugimoto N. Four-wave mixing based widely tunable wavelength conversion using 1-m dispersion-shifted bismuth-oxide photonic crystal fiber. Optics Express, 2007, 15(23): 15418-15423

    [13] Wang Z, Liu H, Huang N, Sun Q, Wen J. Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides. Optics Express, 2012, 20(8): 8920-8928

    [14] Dong L, Thomas B K, Fu L. Highly nonlinear silica suspended core fibers. Optics Express, 2008, 16(21): 16423-16430

    [15] Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 2004, 12(10): 2027-2032

    [16] Xu Q, Miao R, Zhang Y. Highly nonlinear low-dispersion photonic crystal fiber with high birefringence for four-wave mixing. Optical Materials, 2012, 35(2): 217-221

    [17] Sheng X Z, Lou S Q. Influence of deformation holes on properties of photonic crystal fibers. Chinese Physics Letters, 2005, 22(10): 2588-2591

    [18] Saitoh K, Koshiba M. Numerical modeling of photonic crystal fibers. Journal of Lightwave Technology, 2005, 23(11): 3580-3590

    [19] Sun T T, Kai G Y, Wang Z, Yuan S Z, Dong X Y. Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region. Chinese Optics Letters, 2008, 6(2): 93-95

    [20] Butov O V, Golant K M, Tomashuk A L, van Stralen M J N, Breuls A H E. Refractive index dispersion of doped silica for fiber optics. Optics Communications, 2002, 213(4-6): 301-308

    [21] Nakajima K, Ohashi M. Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers. IEEE Photonics Technology Letters, 2002, 14(4): 492-494

    [22] Chen M Y, Subbaraman H, Chen R T. One stage pulse compression at 1554 nm through highly anomalous dispersive photonic crystal fiber. Optics Express, 2011, 19(22): 21809-21817

    [23] Wang J, Jiang C, Hu W, Gao M. Modified design of photonic crystal fibers with flattened dispersion. Optics & Laser Technology, 2006, 38(3): 169-172

    [24] Udagedara I, Premaratne M, Rukhlenko I D, Hattori H T, Agrawal G P. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials. Optics Express, 2009, 17(23): 21179-21190

    [25] Taniyama H, Sumikura H, Notomi M. Finite-difference timedomain analysis of photonic crystal slab cavities with two-level systems. Optics Express, 2011, 19(23): 23067-23077

    [26] Lamont M R, Kuhlmey B T, de Sterke C M. Multi-order dispersion engineering for optimal four-wave mixing. Optics Express, 2008, 16(10): 7551-7563

    Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Frontiers of Optoelectronics, 2013, 6(3): 297
    Download Citation