• Chinese Journal of Lasers
  • Vol. 49, Issue 4, 0406002 (2022)
Chang Zhou1、2, Xiaonan Yu2, Huilin Jiang2、*, Tong Wang2, and Ning An3
Author Affiliations
  • 1School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 2National and Local Engineering Research Center of Space Optoelectronic Technology, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 3Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun, Jilin 130117, China
  • show less
    DOI: 10.3788/CJL202249.0406002 Cite this Article Set citation alerts
    Chang Zhou, Xiaonan Yu, Huilin Jiang, Tong Wang, Ning An. Atmospheric Turbulence Suppression Methods for Near the Earth Wireless Laser Communication Channels Based on Avalanche Photodiode Adaptive Gain Control[J]. Chinese Journal of Lasers, 2022, 49(4): 0406002 Copy Citation Text show less
    References

    [1] Han L Q, You Y H. Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation[J]. Chinese Journal of Lasers, 43, 0706004(2016).

    [2] Jiang H L, Tong S F, Zhang L Z[M]. The technologies and systems of space laser communication technologies and systems of space laser communication, 50-113(2010).

    [3] Cao M H, Wu X, Wang H Q et al. Performance of faster-than-Nyquist optical communication system under Gamma-Gamma atmospheric turbulence[J]. Chinese Journal of Lasers, 47, 0906003(2020).

    [4] Li X Y, Zhang P, Tong S F. Bit error rate performance for modulating retro-reflector free space optical communication system based on adaptive threshold under atmospheric turbulence[J]. Chinese Journal of Lasers, 45, 0606001(2018).

    [5] Cao Y, Li Y, Li X H. Research on construction method of polarization code in wireless optical communication[J]. Acta Optica Sinica, 40, 2106003(2020).

    [6] Yuksel H, Davis C C. Aperture averaging for studies of atmospheric turbulence and optimization of free space optical communication links[J]. Proceedings of SPIE, 5892, 58920P(2005).

    [7] Yuksel H, Milner S, Davis C C. Aperture averaging for optimizing receiver design and system performance on free-space optical communication links[J]. Journal of Optical Networking, 4, 462-475(2005).

    [8] Lee E J, Chan V W S. Diversity coherent and incoherent receivers for free-space optical communication in the presence and absence of interference[J]. Journal of Optical Communications and Networking, 1, 463-483(2009).

    [9] Li M, Cvijetic M. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction[J]. Applied Optics, 54, 1453-1462(2015).

    [10] Zhang Y, Wang P, Liu T et al. Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence[J]. Optics Express, 26, 22182-22196(2018).

    [11] Yao H F, Chen C Y, Ni X L et al. Analysis and evaluation of the performance between reciprocity and time delay in the atmospheric turbulence channel[J]. Optics Express, 27, 25000-25011(2019).

    [12] Yao H F, Ni X L, Chen C Y et al. Performance of M-PAM FSO communication systems in atmospheric turbulence based on APD detector[J]. Optics Express, 26, 23819-23830(2018).

    [13] Yaglom A M, Newell G. An introduction to the theory of stationary random functions[J]. Journal of Applied Mechanics, 30, 479(1963).

    [14] Yi X. Research on irradiance scintillation and mitigation technology in atmospheric laser communications[D], 23-27(2013).

    [15] Dang N T, Pham A T. Performance improvement of FSO/CDMA systems over dispersive turbulence channel using multi-wavelength PPM signaling[J]. Optics Express, 20, 26786-26797(2012).

    [16] Ishimaru A. Wave propagation and scattering in random media[J]. Wave Propagation & Scattering in Random Media, 1, 407-460(1978).

    [17] Tatarski V I[M]. Wave propagation in a turbulent medium, 338-366(1961).

    [18] Li Y, Li M, Poo Y et al. Performance analysis of OOK, BPSK, QPSK modulation schemes in uplink of ground-to-satellite laser communication system under atmospheric fluctuation[J]. Optics Communications, 317, 57-61(2014).

    [19] Yariv A, Yeh P[M]. Photonics: optical electronics in modern communications, 529-530(2006).

    Chang Zhou, Xiaonan Yu, Huilin Jiang, Tong Wang, Ning An. Atmospheric Turbulence Suppression Methods for Near the Earth Wireless Laser Communication Channels Based on Avalanche Photodiode Adaptive Gain Control[J]. Chinese Journal of Lasers, 2022, 49(4): 0406002
    Download Citation