• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1210001 (2021)
Xuquan Wang1、3, Lili Wang2、*, and Jiaxiong Fang1、2、**
Author Affiliations
  • 1State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2Advanced Research Center for Optics, Shandong University, Qingdao, Shandong 266237, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202148.1210001 Cite this Article Set citation alerts
    Xuquan Wang, Lili Wang, Jiaxiong Fang. Research and Application Progresses of Near-Infrared Spectral Sensing Internet of Things[J]. Chinese Journal of Lasers, 2021, 48(12): 1210001 Copy Citation Text show less
    References

    [1] Fang J X. Research on the development of electronic information engineering technology in China[M], 1-23(2018).

    [2] Yu W P. Annual report on the development of the Internet of Things in China 2017-2018[J]. Internet of Things Technologies, 8, 5-6(2018).

    [3] Chen H M, Cui L. Design and model checking of service oriented software architecture for Internet of Things: a survey[J]. Chinese Journal of Computers, 39, 853-871(2016).

    [4] Xiong B H, Yang Z G, Yang L et al. Review on application of Internet of Things technology in animal husbandry in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 31, 237-246(2015).

    [5] Wang J Y, Li C, Xiong Z et al. Survey of data-centric smartcity[J]. Journal of Computer Research and Development, 51, 239-259(2014).

    [6] Li J, Guo M R, Gao L L. Application and innovation strategy of agricultural Internet of Things[J]. Transactions of the Chinese Society of Agricultural Engineering, 31, 200-209(2015).

    [7] Chu X L. Handbook of near infrared spectroscopy[M](2016).

    [8] Chu X L, Shi Y Y, Chen P et al. Research and application progresses of near infrared spectroscopy analytical technique in China in past five years[J]. Journal of Instrumental Analysis, 38, 603-611(2019).

    [9] Chu X L, Lu W Z. Research and application progress of near infrared spectroscopy analytical technology in China in the past five years[J]. Spectroscopy and Spectral Analysis, 34, 2595-2605(2014).

    [10] Wang D J, Zhou X Y, Jin T M et al. Application of near-infrared spectroscopy to agriculture and food analysis[J]. Spectroscopy and Spectral Analysis, 24, 447-450(2004).

    [11] Liu W Q, Chen Z Y, Liu J G et al. Advances with respect to the environmental spectroscopy monitoring technology[J]. Acta Optica Sinica, 40, 0500001(2020).

    [12] Liu L X, He D, Li M Z et al. Identification of Xin-jiang jujube varieties based on hyperspectral technique and machine learning[J]. Chinese Journal of Lasers, 47, 1111002(2020).

    [13] Ni C, Li Z Y, Zhang X et al. Filmsorting algorithm in seed cotton based on near-infrared hyperspectral image and deep learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 50, 170-179(2019).

    [14] Tan A L, Wang X S, Chu Z Y et al. Research on quantitative modeling method of maize composition based on near infrared spectrum fusion and deep learning[J]. Food and Fermentation Industries, 46, 213-219(2020).

    [15] Pasquini C. Near infrared spectroscopy: a mature analytical technique with new perspectives: a review[J]. Analytica Chimica Acta, 1026, 8-36(2018). http://europepmc.org/abstract/MED/29852997

    [16] O'Brien N A, Hulse C A, Friedrich D M et al. Miniature near-infrared (NIR) spectrometer engine for handheld applications[J]. Proceedings of SPIE, 8374, 837404(2012). http://spie.org/Publications/Proceedings/Paper/10.1117/12.917983

    [17] Pérez-Marín D, Paz P, Guerrero J E et al. Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums[J]. Journal of Food Engineering, 99, 294-302(2010). http://www.sciencedirect.com/science/article/pii/S0260877410001111

    [18] Schmidt O, Kiesel P, Bassler M. Performance of chip-size wavelength detectors[J]. Optics Express, 15, 9701-9706(2007).

    [19] Saxe S, Sun L, Smith V et al. Advances in miniaturized spectral sensors[J]. Proceedings of SPIE, 10657, 106570B(2018). http://www.researchgate.net/publication/325137634_Advances_in_miniaturized_spectral_sensors

    [20] Yu X Y. Development and application of a handheld near-infrared spectrometer based on a linear variable filter for measuring the internal quality of fruit[D], 2-38(2016).

    [21] Abel-Tibérini L, Lemarquis F, Lequime M. Masking mechanisms applied to thin-film coatings for the manufacturing of linear variable filters for two-dimensional array detectors[J]. Applied Optics, 47, 5706-5714(2008). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-47-30-5706

    [22] Zhang S D, Bin W, Xu B B et al. Mixed-gas CH4/CO2/CO detection based on linear variable optical filter and thermopile detector array[J]. Nanoscale Research Letters, 14, 348(2019). http://www.ncbi.nlm.nih.gov/pubmed/31768694

    [23] Schmidt O, Kiesel P, Mohta S et al. Resolving pm wavelength shifts in optical sensing[J]. Applied Physics B, 86, 593-600(2007). http://link.springer.com/article/10.1007/s00340-006-2456-y

    [24] Li X, Shao X M, Li T et al. Developments of short-wave infrared InGaAs focal plane detectors[J]. Infrared and Laser Engineering, 49, 0103006(2020).

    [25] Li X, Gong H M, Fang J X et al. The development of InGaAs short wavelength infrared focal plane arrays with high performance[J]. Infrared Physics & Technology, 80, 112-119(2017).

    [26] Shao X M, Gong H M, Li X et al. Developments of high performance short-wave infrared InGaAs focal plane detectors[J]. Infrared Technology, 38, 629-635(2016).

    [27] Wang X Q. The design and experiments of network node based on a new monolithically integrated multichannel spectral sensor[D], 2-38(2016).

    [28] Wang X Q, Huang S L, Yu Y H et al. A compact long-wavelength near-infrared IoT node and its performance experiments[J]. Journal of Infrared and Millimeter Waves, 37, 42-46(2018).

    [29] Wang G S. Design and experiment of a new spectral-sensing IoT node system[D], 20-58(2018).

    [30] Ke P Y, Liu M X, Wang X Q et al. Development of 512×2-element InGaAs spectral sensor IOT node[J/OL]. Journal of Infrared and Millimeter Waves. [2021-01-10]. http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/ch/reader/view_abstract.aspx?file_no=202010270000005

    [31] Wang K. Design and implementation of real-time monitoring system based on spectral data[D], 10-58(2016).

    [32] Wei Y C, Wang X Q, Wei Y et al. Design of mobile terminal in spectral sensing Internet of Things based on android platform[J]. Computer Measurement & Control, 27, 131-136(2019).

    [33] Wei Y C. Design and experiment of dedicated mobile terminal in spectral sensing Internet of Things[D], 21-58(2019).

    [34] Zhao Y Q, Liu X Y, Tang C L. Progress inspectral filter arrays[J]. Laser & Optoelectronics Progress, 57, 190004(2020).

    [35] Zhang Y G, Zhuang X G, Wang X Q et al. Wavelength calibration of a new monolithically integrated spectral sensor[J]. Journal of Infrared and Millimeter Waves, 36, 15-19(2017). http://en.cnki.com.cn/Article_en/CJFDTotal-HWYH201701004.htm

    [36] Zhuang X G. Applied study of near-infrared spectroscopy and incidence optical system design of new spectral sensing node[D], 15-108(2017).

    [37] Wang S F, Yuan Y, Su L J et al. Measurement of thespectral characteristic parameters of linear variable filters[J]. Acta Photonica Sinica, 46, 1112002(2017).

    [38] Sheng B, Chen P, Tao C X et al. Linear variable filters fabricated by ion beam etching with triangle-shaped mask and normal film coating technique[J]. Chinese Optics Letters, 13, 122301(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ659048d7baa5852b

    [39] Wang X Q, Huang S L, Yu Y H et al. Integrated linear variable filter/InGaAs focal plane array spectral micro-module and its wavelength calibration[J]. Acta Photonica Sinica, 47, 0530001(2018).

    [40] Wang X Q, Huang S L, Ke P Y et al. Improvement of LVF-based NIR spectral sensor on both spatial and time domains[J]. Acta Photonica Sinica, 50, 0430001(2021).

    [41] Zhuang X G, Wang L L, Shao X M et al. Design of fiber-optic collector for spectrometer based on curved mirror[J]. Journal of Measurement Science and Instrumentation, 8, 97-102(2017). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CSKX201701015.htm

    [42] Zhuang X G, Shi X S, Wang H F et al. Spectral resolution of the angle-tuned short wave infrared multichannel integrated spectrum assembly[J]. Journal of Infrared and Millimeter Waves, 37, 332-337(2018).

    [43] Jiao D X. Determination of soil organic matter and total nitrogen by modeling with different spectral pretreatment methods[D], 15-55(2019).

    [44] Zhuang X G, Wang L L, Shi X S et al. Rapid determination of production date for green tea by near-infrared spectroscopy[J]. Journal of Measurement Science and Instrumentation, 9, 199-204(2018). http://en.cnki.com.cn/Article_en/CJFDTotal-CSKX201802016.htm

    [45] Zhuang X G, Wang L L, Wu X Y et al. Origin identification of Shandong green tea by moving window back propagation artificial neural network based on near infrared spectroscopy[J]. Journal of Infrared and Millimeter Waves, 35, 200-205(2016).

    [46] Wei Y, Wang X Q, Wei Y C et al. Application research of sensor output digitization for compact near infrared IoT node[J]. Infrared and Laser Engineering, 48, 0904002(2019).

    [47] Wei Y, Wang X Q, Huang Z C et al. Digital output for short-wave infrared InGaAs linear FPA[J]. Journal of Infrared and Millimeter Waves, 37, 257-261(2018).

    [48] Wei Y. Study on compact short-wave infrared InGaAs spectral sensor with digital output[D], 21-108(2019).

    Xuquan Wang, Lili Wang, Jiaxiong Fang. Research and Application Progresses of Near-Infrared Spectral Sensing Internet of Things[J]. Chinese Journal of Lasers, 2021, 48(12): 1210001
    Download Citation