• Frontiers of Optoelectronics
  • Vol. 15, Issue 2, 12200 (2022)
Yongli Tong1、2, Tengxi Zhang1, Yuchen Sun1, Xiaowei Wang1, and Xiang Wu1、3、*
Author Affiliations
  • 1School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
  • 2School of Science, Shenyang Ligong University, Shenyang 110159, China
  • 3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-022-00029-0 Cite this Article
    Yongli Tong, Tengxi Zhang, Yuchen Sun, Xiaowei Wang, Xiang Wu. Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200 Copy Citation Text show less
    References

    [1] Liu, Y., Wu, X.: Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity. Nano Energy 86, 106124 (2021)

    [2] Shi, W., Lv, X., Shen, Y.: BiOI/WO3 photoanode with enhanced photoelectrochemical water splitting activity. Front. Optoelectron. 11(4), 367–374 (2018)

    [3] Liu, Y., Hu, P., Liu, H., Wu, X., Zhi, C.: Tetragonal VO2 hollow nanospheres as robust cathode materials for aqueous zinc ion batteries. Mater. Today Energy 17, 100431 (2020)

    [4] Zhao, Y., He, J., Dai, M., Zhao, D., Wu, X., Liu, B.: Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices. J. Energy Chem. 45, 67–73 (2020)

    [5] Dai, M., Liu, H., Zhao, D., Zhu, X., Umar, A., Algarni, H., Wu, X.: Ni foam substrates modified with a ZnCo2O4 nanowire coated with Ni(OH)2 nanosheet electrode for hybrid capacitors and electrocatalysts. ACS Appl. Nano Mater. 4(5), 5461–5468 (2021)

    [6] Liu, H., Zhao, D., Liu, Y., Tong, Y., Wu, X., Shen, G.: NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Sci. China Mater. 64(3), 581–591 (2021)

    [7] Silvia, P.J., Eddington, K.M., Harper, K.L., Burgin, C.J., Kwapil, T.R.: Reward-seeking deficits in major depression: unpacking appetitive task performance with ex-Gaussian response time variability analysis. Motivation Sci. 7(2), 219–224 (2021)

    [8] Zhao, D., Dai, M., Liu, H., Zhu, X., Wu, X.: PPy film anchored on ZnCo2O4 nanowires facilitating efficient bifunctional electrocatalysis. Materials Today Energy 20, 100637 (2021)

    [9] Tong, Y., Cheng, X., Liu, X., Qi, D., Chi, B., Wang, Y.: Hybrid Co3O4/Co9S8 nanowires for high-performance asymmetric supercapacitors. J. Nanoelectron. Optoelectron. 15, 237–242 (2020)

    [10] Liu, C., Wu, X., Wang, B.: Performance modulation of energy storage devices: a case of Ni-Co-S electrode materials. Chem. Eng. J. 392, 123651 (2020)

    [11] Liu, H., Zhao, D., Liu, Y., Hu, P., Wu, X., Xia, H.: Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@MoZn22 core-shell structures. Chem. Eng. J. 373, 485–492 (2019)

    [12] Liu, H., Zhao, D., Hu, P., Chen, K., Wu, X., Xue, D.: Design strategies toward achieving high-performance CoMoO4@Co1.62Mo6S8 electrode materials. Mater. Today Phys. 13, 100197 (2020)

    [13] Peng, S., Li, L., Wu, H., Madhavi, S., Lou, X.: Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 5(2), 1401172 (2015)

    [14] Qiu, K., Lu, Y., Zhang, D., Cheng, J., Yan, H., Xu, J., Liu, X., Kim, J., Luo, Y.: Mesoporous hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 11, 687–696 (2015)

    [15] Zhao, D., Liu, H., Wu, X.: Bi-interface induced multi-active MCo2O4@MCo2S4@PPy (M=Ni, Zn) sandwich structure for energy storage and electrocatalysis. Nano Energy 57, 363–370 (2019)

    [16] Gao, X., Zhang, Y., Huang, M., Li, F., Hua, C., Yu, L., Zheng, H.: Facile synthesis of Co3O4@NiCo2O4 core–shell arrays on Ni foam for advanced binder-free supercapacitor electrodes. Ceram. Int. 40(10), 15641–15646 (2014)

    [17] Gu, Z., Guo, J., Zhao, X., Wang, X., Xie, D., Sun, Z., Zhao, C., Liang, H., Li, W., Wu, X.: High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. InfoMat 3(6), 694–704 (2021)

    [18] Dai, M., Zhao, D., Wu, X.: Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors. Chin. Chem. Lett. 31(9), 2177–2188 (2020)

    [19] Liu, H., Dai, M., Zhao, D., Wu, X., Wang, B.: Realizing superior electrochemical performance for asymmetric capacitors through tailoring electrode architectures. ACS Appl. Energy Mater. 3(7), 7004–7010 (2020)

    [20] Dai, M., Zhao, D., Liu, H., Tong, Y., Hu, P., Wu, X.: Nanostructure and doping engineering of ZnCoP for high performance electrolysis of water. Mater. Today Energy 16, 100412 (2020)

    [21] Zhu, X., Meng, F., Zhang, Q., Xue, L., Zhu, H., Lan, S., Liu, Q., Zhao, J., Zhuang, Y., Guo, Q., Liu, B., Gu, L., Lu, X., Ren, Y., Xia, H.: LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Sustain. 4(5), 392–401 (2021)

    [22] Xing, L., Dong, Y., Hu, F., Wu, X., Umar, A.: Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans. (Cambridge, England) 47(16), 5687–5694 (2018)

    [23] Tong, Y., Liu, H., Dai, M., Xiao, L., Wu, X.: Metal-organic framework-derived Co3O4/PPy bifunctional electrocatalysts for efficient overall water splitting. Chin. Chem. Lett. 31(9), 2295–2299 (2020)

    [24] Xing, L., Dong, Y., Wu, X.: Hierarchical Co3O4@Co9S8 nanowall structures assembled by many nanosheets for high performance asymmetric supercapacitors. RSC Adv. 8(49), 28172–28178 (2018)

    [25] Hu, P., Liu, Y., Liu, H., Xiang, W., Liu, B.: MnCo2O4 nanosheet/NiCo2S4 nanowire heterostructures as cathode materials for capacitors. ACS Appl. Nano Mater. 4(2), 2183–2189 (2021)

    [26] Tong, Y., Dai, M., Xing, L., Liu, H., Sun, W., Wu, X.: Asymmetric hybrid capacitor based on NiCo2O4 nanosheets electrode. Wuli Huaxue Xuebao 36(7), 1903046 (2020)

    [27] Zhao, D., Dai, M., Liu, H., Chen, K., Zhu, X., Xue, D., Wu, X., Liu, J.: Sulfur induced interface engineering of hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage. Adv. Mater. Interfaces 6(21), 1901308 (2019)

    [28] Lu, Y., Deng, B., Liu, Y., Wang, J., Tu, Z., Lu, J., Xiao, X., Xu, G.: Nanostructured Co3O4 for achieving high-performance supercapacitor. Mater. Lett. 285, 129101 (2021)

    [29] Sivakumar, P., Jana, M., Kota, M., Jung, M.G., Gedanken, A., Park, H.S.: Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application. J. Power Sources 402, 147–156 (2018)

    [30] Zhao, D., Hu, F., Umar, A., Wu, X.: NiCo2O4 nanowires based flexible electrode materials for asymmetric supercapacitors. N. J. Chem. 42(9), 7399–7406 (2018)

    [31] Zhang, H., Yan, B., Zhou, C., Wang, J., Duan, H., Zhang, D., Zhao, H.: MOF-derived hollow and porous Co3O4 nanocages for superior hybrid supercapacitor electrodes. Energy Fuels 35(20), 16925–16932 (2021)

    [32] Liang, S., Wang, H., Li, Y., Qin, H., Luo, Z., Chen, L.: Ternary synergistic transition metal oxalate 2D porous thin sheets assembled by 3D nanoflake array with high performance for supercapattery. Appl. Surf. Sci. 567, 150809 (2021)

    [33] Jiang, Y., Chen, L., Zhang, H., Zhang, Q., Chen, W., Zhu, J., Song, D.: Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem. Eng. J. 292, 1–12 (2016)

    [34] Song, D., Zhu, J., Li, J., Pu, T., Huang, B., Zhao, C., Xie, L., Chen, L.: Free-standing two-dimensional mesoporous ZnCo2O4 thin sheets consisting of 3D ultrathin nanoflake array frameworks for high performance asymmetric supercapacitor. Electrochim. Acta 257, 455–464 (2017)

    Yongli Tong, Tengxi Zhang, Yuchen Sun, Xiaowei Wang, Xiang Wu. Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors[J]. Frontiers of Optoelectronics, 2022, 15(2): 12200
    Download Citation