• Photonics Research
  • Vol. 9, Issue 9, 1811 (2021)
Junting Liu1, He Yang2、4, Vladislav Khayrudinov3, Harri Lipsanen3, Hongkun Nie1、*, Kejian Yang1, Baitao Zhang1, and Jingliang He1
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
  • 2Summa Semiconductor Oy, Micronova, Espoo FI-00076, Finland
  • 3Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076, Finland
  • 4e-mail: yhyanghe@gmail.com
  • show less
    DOI: 10.1364/PRJ.430172 Cite this Article Set citation alerts
    Junting Liu, He Yang, Vladislav Khayrudinov, Harri Lipsanen, Hongkun Nie, Kejian Yang, Baitao Zhang, Jingliang He. Ultrafast carrier dynamics and nonlinear optical response of InAsP nanowires[J]. Photonics Research, 2021, 9(9): 1811 Copy Citation Text show less
    References

    [1] J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science, 339, 1057-1060(2013).

    [2] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater., 14, 636-642(2015).

    [3] H. Pettersson, J. Trägårdh, A. I. Persson, L. Landin, D. Hessman, L. Samuelson. Infrared photodetectors in heterostructure nanowires. Nano Lett., 6, 229-232(2006).

    [4] N. Engheta. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science, 317, 1698-1702(2007).

    [5] Y. S. No, L. Xu, M. N. Mankin, H. G. Park. Shape-controlled assembly of nanowires for photonic elements. ACS Photon., 3, 2285-2290(2016).

    [6] J. Kim, H. C. Lee, K. H. Kim, M. S. Hwang, J. S. Park, J. M. Lee, J. P. So, J. H. Choi, S. H. Kwon, C. J. Barrelet, H. G. Park. Photon-triggered nanowire transistors. Nat. Nanotechnol., 12, 963-968(2017).

    [7] Y. Cui, C. M. Lieber. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 291, 851-853(2001).

    [8] D. M. Lyons, K. M. Ryan, M. A. Morris, J. D. Holmes. Tailoring the optical properties of silicon nanowire arrays through strain. Nano Lett., 2, 811-816(2002).

    [9] L. B. Luo, F. X. Liang, X. L. Huang, T. X. Yan, J. G. Hu, Y. Q. Yu, C. Y. Wu, L. Wang, Z. F. Zhu, Q. Li, J. S. Jie. Tailoring the electrical properties of tellurium nanowires via surface charge transfer doping. J. Nanopart. Res., 14, 967-976(2012).

    [10] S. M. Bergin, Y. H. Chen, B. J. Wiley. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 4, 1996-2004(2012).

    [11] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. Bakkers, L. P. Kouwenhoven. Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 336, 1003-1007(2012).

    [12] L. Balaghi, G. Bussone, J. Grenzer, M. Ghorbani, A. Krasheninnikov, H. Schneider. Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nat. Commun., 10, 2793(2019).

    [13] M. Li, J. C. Li. Size effects on the band-gap of semiconductor compounds. Mater. Lett., 60, 2526-2529(2006).

    [14] I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Björk, L. Samuelson. A GaAs nanowire array solar cell with 15.3% efficiency. IEEE J. Photovolt., 6, 185-190(2016).

    [15] Z. Liu, L. Yin, H. Ning, Z. Yang, L. Tong, C. Z. Ning. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett., 13, 4945-4950(2013).

    [16] M. D. Thompson, A. Alhodaib, A. P. Craig, A. Robson, A. Aziz, A. Krier, J. Svensson, L. E. Wernersson, A. M. Sanchez, A. R. Marshall. Low leakage-current InAsSb nanowire photodetectors on silicon. Nano Lett., 16, 182-187(2016).

    [17] A. L. Efros, M. Rosen. The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Res., 30, 475-521(2000).

    [18] S. K. Lim, M. Brewster, F. Qian, Y. Li, C. M. Lieber, S. Gradečak. Direct correlation between structural and optical properties of III−V nitride nanowire heterostructures with nanoscale resolution. Nano Lett., 9, 3940-3944(2009).

    [19] J. Hou, B. Zhang, X. Su, R. Zhao, Z. Wang, F. Lou, J. He. High efficient mode-locked Tm:YAP laser emitting at 1938 nm by SESAM. Opt. Commun., 347, 88-91(2015).

    [20] J. H. Lee, M. W. Pin, S. J. Choi, M. H. Jo, J. C. Shin, S. G. Hong, S. M. Lee, B. Cho, S. J. Ahn, N. W. Song, S. H. Yi, Y. H. Kim. Electromechanical properties and spontaneous response of the current in InAsP nanowires. Nano Lett., 16, 6738-6745(2016).

    [21] E. Lind, A. I. Persson, L. Samuelson, L. E. Wernersson. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. Nano Lett., 6, 1842-1846(2006).

    [22] M. Takiguchi, N. Takemura, K. Tateno, K. Nozaki, S. Sasaki, S. Sergent, E. Kuramochi, T. Wasawo, A. Yokoo, A. Shinya, M. Notomi. All-optical InAsP/InP nanowire switches integrated in a Si photonic crystal. ACS Photon., 7, 1016-1021(2020).

    [23] M. Karimi, M. Heurlin, S. Limpert, V. Jain, X. Zeng, I. Geijselaers, A. Nowzari, Y. Fu, L. Samuelson, H. Linke, M. T. Borgstrom, H. Pettersson. Intersubband quantum disc-in-nanowire photodetectors with normal-incidence response in the long-wavelength infrared. Nano Lett., 18, 365-372(2018).

    [24] J. Treu, M. Bormann, H. Schmeiduch, M. Doblinger, S. Morkotter, S. Matich, P. Wiecha, K. Saller, B. Mayer, M. Bichler, M. C. Amann, J. J. Finley, G. Abstreiter, G. Koblmuller. Enhanced luminescence properties of InAs-InAsP core-shell nanowires. Nano Lett., 13, 6070-6077(2013).

    [25] Q. Hu, P. Li, B. Zhang, B. Liu, L. Wang, X. Chen. Passively Q-switched Yb-doped dual wavelength fiber laser based on a gold-nanocage saturable absorber. Appl. Opt., 57, 8242-8248(2018).

    [26] X. Han, K. Wang, H. Long, H. Hu, J. Chen, B. Wang, P. Lu. Highly sensitive detection of the lattice distortion in single bent ZnO nanowires by second-harmonic generation microscopy. ACS Photon., 3, 1308-1314(2016).

    [27] N. M. Jassim, K. Wang, X. Han, H. Long, B. Wang, P. Lu. Plasmon assisted enhanced second-harmonic generation in single hybrid Au/ZnS nanowires. Opt. Mater., 64, 257-261(2017).

    [28] R. Carles, N. Saint-Cricq, J. B. Renucci, R. J. Nicholas. Raman scattering in InP1-xAsx alloys. J. Phys. C, 13, 899-910(1980).

    [29] J. Guo, R. Shi, R. Wang, Y. Wang, F. Zhang, C. Wang, H. Chen, C. Ma, Z. Wang, Y. Ge, Y. Song, Z. Luo, D. Fan, X. Jiang, J. Xu, H. Zhang. Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics. Laser Photon. Rev., 14, 1900367(2020).

    [30] M. Breusing, C. Ropers, T. Elsaesser. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett., 102, 086809(2009).

    [31] H. Wang, C. Zhang, F. Rana. Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett., 15, 8204-8210(2015).

    [32] D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, T. F. Heinz. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. Nano Lett., 14, 5625-5629(2014).

    [33] J. S. Manser, P. V. Kamat. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics, 8, 737-743(2014).

    [34] M. Ghanassi, M. C. Schanne-Klein, F. Hache, A. I. Ekimov, D. Ricard, C. Flytzanis. Time-resolved measurements of carrier recombination in experimental semiconductor-doped glasses: confirmation of the role of Auger recombination. Appl. Phys. Lett., 62, 78-80(1993).

    [35] I. Robel, B. A. Bunker, P. V. Kamat, M. Kuno. Exciton recombination dynamics in CdSe nanowires:  bimolecular to three-carrier Auger kinetics. Nano Lett., 6, 1344-1349(2006).

    [36] V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science, 287, 1011-1013(2000).

    [37] J. Guo, D. Huang, Y. Zhang, H. Yao, Y. Wang, F. Zhang, R. Wang, Y. Ge, Y. Song, Z. Guo, F. Yang, J. Liu, C. Xing, T. Zhai, D. Fan, H. Zhang. 2D GeP as a novel broadband nonlinear optical material for ultrafast photonics. Laser Photon. Rev., 13, 1900123(2019).

    [38] K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, J. Wang. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 6, 10530-10535(2014).

    [39] S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, L. Kulyuk. Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2. Opt. Express, 24, 20685-20695(2016).

    [40] K. Wang, B. M. Szydlowska, G. Wang, X. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, W. J. Blau. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared. ACS Nano, 10, 6923-6932(2016).

    [41] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, H. Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photon. Rev., 12, 1700229(2018).

    [42] J. Liu, V. Khayrudinov, H. Yang, Y. Sun, B. Matveev, M. Remennyi, K. Yang, T. Haggren, H. Lipsanen, F. Wang, B. Zhang, J. He. InAs-nanowire-based broadband ultrafast optical switch. J. Phys. Chem. Lett., 10, 4429-4436(2019).

    [43] M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. V. Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760-769(1990).

    Junting Liu, He Yang, Vladislav Khayrudinov, Harri Lipsanen, Hongkun Nie, Kejian Yang, Baitao Zhang, Jingliang He. Ultrafast carrier dynamics and nonlinear optical response of InAsP nanowires[J]. Photonics Research, 2021, 9(9): 1811
    Download Citation