• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 10, 100602 (2024)
Tong WANG1,2, Zijing LIU1,2,*, Pengcheng ZHAO1,2, and Yingjie XIAO1,2
Author Affiliations
  • 1College of Nuclear Science and Technology, University of South China, Hengyang 421001, China
  • 2Hunan Digital Reactor Engineering and Technology Research Center, University of South China, Hengyang 421001, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.100602 Cite this Article
    Tong WANG, Zijing LIU, Pengcheng ZHAO, Yingjie XIAO. Design method of high-flux lead-bismuth cooled reactor neutron flux maximization based on BP neural network[J]. NUCLEAR TECHNIQUES, 2024, 47(10): 100602 Copy Citation Text show less
    Cross-sectional views of a multifunctional ultra-high flux lead-bismuth cooled reactor(a) Cross section of core along X-Y axis, (b) Cross section of core along X-Z axis, (c) Cross section of fuel assembly, (d) Cross section of fuel rod
    Fig. 1. Cross-sectional views of a multifunctional ultra-high flux lead-bismuth cooled reactor(a) Cross section of core along X-Y axis, (b) Cross section of core along X-Z axis, (c) Cross section of fuel assembly, (d) Cross section of fuel rod
    Data distribution plot of 1 600 design variables
    Fig. 2. Data distribution plot of 1 600 design variables
    Learning curve of BP neural network prediction model(a) φmax neural network prediction model, (b) keff neural network prediction model
    Fig. 3. Learning curve of BP neural network prediction model(a) φmax neural network prediction model, (b) keff neural network prediction model
    Flow chart of sensitivity analysis method for core design parameters based on Sobol index method
    Fig. 4. Flow chart of sensitivity analysis method for core design parameters based on Sobol index method
    Flowchart of optimization method based on BP neural network dynamic surrogate model
    Fig. 5. Flowchart of optimization method based on BP neural network dynamic surrogate model
    Operation flow of high-flux lead-bismuth cooled reactor optimization design platform
    Fig. 6. Operation flow of high-flux lead-bismuth cooled reactor optimization design platform
    Sensitivity index of core design parameters to maximum neutron flux (color online)
    Fig. 7. Sensitivity index of core design parameters to maximum neutron flux (color online)
    Iterative optimization results of maximum neutron flux density in the core
    Fig. 8. Iterative optimization results of maximum neutron flux density in the core
    设计参数Design parameters数值Numerical value
    热功率Thermal power / MW150
    换料周期Refueling cycle / d90
    冷却剂材料Coolant material208Pb-Bi
    反射层材料Reflecting layer material208Pb
    包壳材料Cladding materialT91
    燃料棒间隙填充气体Fuel rod gap filler gasHe
    入口温度Inlet temperature / ℃170
    出口温度Outlet temperature / ℃536.5
    燃料装载量/235U装载量Fuel loads/235U loads / kg779/175.3
    堆芯活性区等效直径Equivalent diameter of active zone / cm58.14
    堆芯活性区高度Height of active zone / cm50
    燃料棒内/外直径Fuel rod inner/outer diameter / cm4/4.6
    燃料棒气隙宽度Fuel rod gas gap width / mm0.1
    包壳厚度Cladding thickness / mm0.2
    栅距Grid pitch / mm5.2
    栅径比P/D Grid diameter ratio P/D1.130 4
    反射层轴向/径向厚度Reflective layer axial/radial thickness / cm80/120
    Table 1. Multi-functional ultra high flux lead-bismuth cooled reactor design parameters
    设计变量Design variables取值区间Value interval
    栅径比Grid diameter ratio[1.00, 1.50]
    燃料芯块直径Fuel diameter / cm[0.3, 1.5]
    堆芯活性区高度Height of core active area / cm[40, 200]
    反射层厚度Reflective layer thickness / cm[20, 220]
    Table 2. Multi-functional ultra-high flux lead-bismuth cooled reactor optimization variable value intervals
    参数Parameters值/计算式Value/Equation
    熔点Melting point / KTM=398.0
    沸点Boiling point / KTB=1 927.0
    表面张力Surface tension / N‧m-1σ=(448.5–0.08T)×10-3
    密度Density / kg‧m-3ρ=11 065–1.293T
    等压比热Constant pressure specific heat / J‧(kg‧K)-1Cp=164.8–3.94×10-2T+1.25×10-5T2–4.56×105T2
    动力粘度Viscosity of dynamics / Pa‧sμ=4.94×10-4exp(754.1/T)
    热导率Heat conduction / W‧(m‧K)-1λ=3.284+1.617×10-2T–2.305×10-6T2
    Table 3. Physical parameters of lead-bismuth alloy

    样本

    Sample

    size

    设计变量

    Design variable

    目标函数响应值

    Objective function

    response value

    约束条件响应值

    Constraint response

    value

    栅径比

    Grid pitch ratio

    燃料芯块直径

    Fuel diameter

    / cm

    堆芯活性区高度

    Height of core

    active zone / cm

    反射层厚度

    Reflective layer

    thickness / cm

    φmax / n·cm–2·s–1keff
    11.493 7760.429 575185.214 6162.842 21.662 1×10151.215 37
    21.315 7690.677 58791.307 3185.845 71.548 1×10151.327 71
    31.495 5110.741 313164.465 9152.645 87.189 8×10141.391 04
    41.427 0460.884 54972.922 3133.951 01.218 5×10151.334 17
    51.420 8331.470 29555.927 6193.398 06.153 2×10141.398 67
    61.236 8951.407 29568.267 460.641 85.943 2×10141.461 60
    71.240 6461.489 613100.568 1109.038 43.461 9×10141.528 40
    81.227 7130.751 283162.399 0115.514 57.351 6×10141.437 19
    91.174 6091.465 010187.868 3143.498 91.858 2×10141.592 46
    101.485 6310.663 466143.914 9177.673 09.966 5×10141.349 12
    1 6001.183 9041.387 36785.603 8152.429 04.558 4×10141.516 41
    Table 4. High-flux lead-bismuth cooled reactor training database
    超参数Super-parameter数值Numerical value
    隐藏层层数Number of hidden layers[1, 2, 3, 4, 5]
    学习率Learning rate[1×10–4, 1×10–3, 1×10–2, 1×10–1]
    训练批次Batch size[32, 48, 96, 128, 256, 512, 1 024]
    L2正则化系数L2 regularizer coefficient[1×10–3, 1×10–2, 1×10–1]
    Table 5. Hyperparameter space setting

    参数

    Parameters

    φmax神经网络模型

    φmax neural network model

    keff神经网络模型

    keff neural network model

    输入参数

    Input parameters

    燃料芯块直径、栅距、活性区高度、反射层厚度

    Fuel diameter, grid pitch, active zone height, reflective layer thickness

    输出参数

    Output parameters

    堆芯最大快中子通量

    Maximum fast neutron flux in the core

    有效增殖因数

    Effective multiplication factor

    学习率Learning rate0.0010.01
    训练次数Epochs2 0002 000
    训练批次Batch size32512
    隐藏层层数Number of hidden layers13
    隐藏层神经元个数Number of neurons per hidden layer100100/100/100
    激活函数Activation functionReLuReLu
    损失函数Loss functionMean_squared_errorMean_squared_error
    优化器Optimization algorithmAdamAdam
    正则化RegularizationL2(0.000 1)L2(0.000 1)
    Table 6. Neural network model architecture setup

    神经网络预测模型

    Neural network prediction model

    MSE / 10–4R2 / 10–2
    φmax神经网络φmax neural network9.974 40.999 1
    keff神经网络keff neural network1.093 90.998 5
    Table 7. Prediction accuracy of neural network models

    堆芯设计参数

    Core design parameters

    数值Value
    第一组Group 1第二组Group 2第三组Group 3
    栅径比Grid pitch ratio1.096 21.095 41.091 5
    燃料芯块直径Fuel diameter / cm0.391 40.405 40.405 1
    堆芯活性区高度Height of core active zone / cm44.313 840.340 940.381 1
    反射层厚度Reflective layer thickness / cm212.711 1207.437 4211.449 3

    φmax

    /1015 n·cm–2·s–1

    BP神经网络预测值BP NN predicted value8.832 09.107 09.128 8
    RMC计算值RMC calculated value8.827 39.105 09.127 5
    相对误差Relative error / %0.053 30.021 80.014 3
    keffBP神经网络预测值BP NN predicted value1.008 21.003 01.003 8
    RMC计算值RMC calculated value1.008 71.002 81.004 0
    相对误差Relative error / %0.047 00.022 50.019 4
    Table 8. Comparison of results between neural network predicted values and RMC calculated values
    堆芯方案及参数Core program and parameters初始方案Initial program优化方案Optimization solutions
    最大中子通量密度Maximum neutron flux density / n·cm–2·s–17.979 8×10159.209 8×1015
    栅径比Grid pitch ratio1.108 71.090 6
    燃料芯块直径Fuel diameter / cm0.40.402 7
    堆芯活性区高度Height of core active zone / cm5040.477 7
    反射层厚度Reflective layer thickness / cm80214.182 0
    初始keff Initial keff1.005 91.001 5
    换料周期Refuel cycle / d>90>90
    包壳最高温度Maximum cladding temperature / °C533.63525.43
    芯块最大温度Maximum fuel pellet temperature / °C992.67969.10
    Table 9. Optimal program design parameters
    Tong WANG, Zijing LIU, Pengcheng ZHAO, Yingjie XIAO. Design method of high-flux lead-bismuth cooled reactor neutron flux maximization based on BP neural network[J]. NUCLEAR TECHNIQUES, 2024, 47(10): 100602
    Download Citation