• Optics and Precision Engineering
  • Vol. 26, Issue 1, 95 (2018)
LIU Liang*, ZHAO Xin-hua, WANG Shou-jun, and QIN Shuai-hua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20182601.0095 Cite this Article
    LIU Liang, ZHAO Xin-hua, WANG Shou-jun, QIN Shuai-hua. Inverse dynamic modeling and control of spatial rigid-flexible parallel manipulator[J]. Optics and Precision Engineering, 2018, 26(1): 95 Copy Citation Text show less
    References

    [2] XUE ZH P, LI M, JIA H G, et al.. Modal method based dynamic analysis of cantilever type elastic structures [J]. Opt. Precision Eng., 2015, 23(8): 2250-2257. (in Chinese)

    [3] YU Y Q, DU ZH C, YANG J X, et al.. An experimental study on the dynamics of a 3-RRR flexible parallel robot [J]. IEEE Transactions on Robotics, 2011, 27(5): 992-997.

    [4] ZHAO L, ZHAO X H, ZHOU H B, et al.. Flexible dynamic modeling and error coupling of parallel measuring machine [J]. Opt. Precision Eng., 2016, 24(10): 2471-2479. (in Chinese)

    [5] WANG X Y, MILLS J K. Dynamic modeling of a flexible-link planar parallel platform using a substructuring approach [J]. Mechanism and Machine Theory, 2006, 41(6): 671-687.

    [6] YANG Z, SADLER J P. A one-pass approach to dynamics of high-speed machinery through three-node lagrangian beam elements [J]. Mechanism and Machine Theory, 1999, 34(7): 995-1007.

    [7] ZHANG X P, MILLS J K, CLEGHORN W L. Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links [J]. Multibody System Dynamics, 2009, 21(2): 167-192.

    [8] YAKOUB R Y, SHABANA A A. Three dimensional absolute nodal coordinate formulation for beam elements: Implementation and applications [J]. Journal of Mechanical Design, 2000, 123(4): 614-621.

    [9] SHABANA A A. Dynamics of Multibody Systems [M]. 4th ed.. Cambridge: Cambridge University Press, 2013.

    [10] GARCA-VALLEJO D, MAYO J, ESCALONA J L, et al.. Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation [J]. Nonlinear Dynamics, 2004, 35(4): 313-329.

    [11] HUSSEIN B, NEGRUT D, SHABANA A A. Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations [J]. Nonlinear Dynamics, 2008, 54(4): 283-296.

    [12] CHUNG J, HULBERT G M. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method [J]. Journal of Applied Mechanics, 1993, 60(2): 371-375.

    [13] DE JALN J G, BAYO E. Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge [M]. New York: Springer, 1994.

    [14] ZHANG X P, MILLS J K, CLEGHORN W L. Experimental implementation on vibration mode control of a moving 3-PRR flexible parallel manipulator with multiple PZT transducers [J]. Journal of Vibration and Control, 2010, 16(13): 2035-2054.

    [15] NACHBAGAUER K, GRUBER P, GERSTMAYR J. Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: Application to static and linearized dynamic examples [J]. Journal of Computational and Nonlinear Dynamics, 2012, 8(2): 021004-021004-7.

    CLP Journals

    [1] CHEN Yuan, HE Shu-lei, JIANG Yuan, SANG Dong-hui, NING Shu-rong. Dynamic model of spherical parallel mechanism for wheel-leg hybrid mobile robot[J]. Optics and Precision Engineering, 2019, 27(8): 1800

    [2] ZHAO Yu-ming, JIN Zhen-lin. Inverse dynamics modeling of 3-RPS/3n-SPS parallel mechanism with redundant limbs[J]. Optics and Precision Engineering, 2019, 27(4): 807

    LIU Liang, ZHAO Xin-hua, WANG Shou-jun, QIN Shuai-hua. Inverse dynamic modeling and control of spatial rigid-flexible parallel manipulator[J]. Optics and Precision Engineering, 2018, 26(1): 95
    Download Citation