[1] 马佳光. 捕获跟踪与瞄准系统的基本技术问题[J]. 光学工程, 1989, 16(3): 1-42.MAJ G. The basic technologies of the acquisition, tracking and pointing systems[J]. Opto-Electronic Engineering, 1989, 16(3): 1-42.(in Chinese)
[2] B S ROBINSON, D M BOROSON, D A BURIANEK et al. The lunar laser communications demonstration, 11, 54-57(2011).
[3] 亓波. 量子通信光学地面站ATP关键技术研究[D]. 成都: 中国科学院研究生院(光电技术研究所), 2014.QIB. Study on Acquisition, Tracking and Pointing Key Technology of Optical Ground Station for Quantum Communication[D].Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2014. (in Chinese)
[4] 胡浩军. 运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D]. 长沙: 国防科学技术大学, 2005.HUH J. Line-of-sight Stabilization of Acquisition, Tracking and Pointing System on Moving bed[D].Changsha: National University of Defense Technology, 2005. (in Chinese)
[5] 田竞. 惯性稳定平台中的多传感器控制技术研究[D]. 成都: 电子科技大学, 2016.TIANJ. Research on Multiple Sensors Control Technology of Inertial Stabled-Platforms[D].Chengdu: University of Electronic Science and Technology of China, 2016. (in Chinese)
[6] 毛耀. 运动平台光电系统的视轴稳定技术研究[D]. 北京: 中国科学院研究生院, 2012.MAOY. Research on Line-of-sight Stabilization Technology of Photoelectric System of Noving Platform[D].Beijing: Graduate University of Chinese Academy of Sciences, 2012. (in Chinese)
[7] H HEMMATI. Deep Space Optical Communications(2006).
[8] 邓超. 运动平台预测跟踪技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2018.DENGC. Research on Prediction Tracking Control on Moving Bed[D].Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2018. (in Chinese)
[9] 杨开栋, 王德恩, 杨英, 等. 光电跟踪系统中的惯性稳定技术[J]. 强激光与粒子束, 2022, 34(8): 220065. doi: 10.11884/HPLPB202234.220065YANGK D, WANGD E, YANGY, et al. Inertial stabilization technology in optical-electric tracking system[J]. High Power Laser and Particle Beams, 2022, 34(8): 220065.(in Chinese). doi: 10.11884/HPLPB202234.220065
[10] 唐涛, 马佳光, 陈洪斌, 等. 光电跟踪系统中精密控制技术研究进展[J]. 光电工程, 2020, 47(10): 200315. doi: 10.12086/oee.2020.200315TANGT, MAJ G, CHENH B, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electronic Engineering, 2020, 47(10): 200315.(in Chinese). doi: 10.12086/oee.2020.200315
[11] M F LUNIEWICZ, J P GILMORE, T T CHIEN et al. Comparison of wideband inertial line-of-sight stabilization reference mechanizations, 1697, 378-398(1992).
[12] M F LUNIEWICZ, J MURPHY, E O’NEIL et al. Testing the inertial pseudo-star reference unit, 2221, 638-649(1994).
[13] D ECKELKAMP-BAKER, H R SEBESTA, K BURKHARD. Magnetohydrodynamic inertial reference system, 4025, 99-110(2000).
[14] S LEE, G G ORTIZ, J W ALEXANDER et al. Accelerometer-assisted tracking and pointing for deep space optical communications, 3-1559(2001).
[15] J P GILMORE, M F LUNIEWICZ, D SARGENT. Enhanced precision pointing jitter suppression system, 4632, 38-49(2002).
[16] R E WALTER, H DANNY, J DONALDSON. Stabilized inertial measurement system (SIMS), 4724, 57-68(2002).
[17] S WASSON, F MORGAN, D ECKELKAMP-BAKER. Embedded FPGA platform for fast steering mirror and optical inertial reference unit applications, 8052, 190-199(2011).
[19] M HARUNA, K KODEKI, S SHIMIZU et al. Evaluation of developing inertial stabilization unit, 184-193(2015).
[20] N JACKA, R WALTER, D LAUGHLIN et al. Design of stabilized platforms for deep space optical communications (DSOC), 171-178(2017).
[21] 纪明. 武装直升机瞄准线粗/精组合二级稳定技术[J]. 航空学报, 1997, 18(3): 289-293. doi: 10.3321/j.issn:1000-6893.1997.03.008JIM. Secondary stability technology of coarse/fine combination of aiming line of armed helicopter[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(3): 289-293.(in Chinese). doi: 10.3321/j.issn:1000-6893.1997.03.008
[22] 罗彤, 李贤, 胡渝. 星间光通信中振动抑制的研究[J]. 宇航学报, 2002, 23(3): 77-80, 88. doi: 10.3321/j.issn:1000-1328.2002.03.017LUOT, LIX, HUY. Vibration suppression in optical inter-satellite communications[J]. Journal of Astronautics, 2002, 23(3): 77-80, 88.(in Chinese). doi: 10.3321/j.issn:1000-1328.2002.03.017
[23] 翟伟. 惯性稳定平台设计及实验研究[D]. 成都: 中国科学院光电技术研究所, 2005.ZHAIW. Design and Experimental Study of Inertial Stabilization Platform [D]. Chengdu: Institute of Optoelectronics Technology, Chinese Academy of Sciences, 2005. (in Chinese)
[24] Y MAO, W REN, Y LUO et al. Optimal design based on closed-loop fusion for velocity bandwidth expansion of optical target tracking system. Sensors, 19, 133(2019).
[25] Y MAO, W REN, W YU et al. Characteristic analysis and robust control design of double-stage precision stabilized platform. Sensors and Actuators A: Physical, 300, 111636(2019).
[26] Y T WANG, P JIA, Z S WANG et al. Performance evaluation of optical-beam stabilization platforms with different supports used in large-aperture electro-optical system. IEEE Photonics Journal, 14, 3161449(2022).
[27] 郑安琪. 惯性基准的不完全微分PID-扰动观测器复合位置控制[D]. 天津: 天津大学, 2020.ZHENGA Q. Incomplete Differential PID-disturbance Observer Compound Position Control for Inertial Reference Unit[D].Tianjin: Tianjin University, 2020. (in Chinese)
[28] 拓卫晓. 基于 MHD-ARS的惯性参考单元关键问题研究[D]. 天津: 天津大学, 2022.TuoW X. Key issues of MHD-ARS Based Inertial Reference Unit[D]. Tianjin: Tianjin University, 2022. (in Chinese)
[29] 王凡. 基于扩张状态观测器的惯性参考单元稳定控制技术研究[D]. 天津: 天津大学, 2022. doi: 10.5152/anatoljcardiol.2021.580WangF. Research on Stability Control Technology of Inertial Reference Unit Based on Dilated State Observer [D]. Tianjin: Tianjin University, 2022. (in Chinese). doi: 10.5152/anatoljcardiol.2021.580
[30] W X TUO, X F LI, Y JI et al. Analytical compliance model for right circle flexure hinge considering the stress concentration effect. International Journal of Precision Engineering and Manufacturing, 21, 895-904(2020).
[31] W X TUO, X F LI, Y JI et al. Mechanical design and determination of bandwidth for a two-axis inertial reference unit. Mechanical Systems and Signal Processing, 172, 108962(2022).
[32] Z GUO, Y TIAN, D ZHANG et al. A novel stick-slip based linear actuator using bi-directional motion of micropositioner. Mechanical Systems and Signal Processing, 128, 37-49(2019).
[33] J M PAROS, L WEISBORD. How to design flexure hinges. Machine Design, 37, 151-156(1965).
[34] 吴鹰飞, 周兆英. 柔性铰链的计算和分析[J]. 机械设计与研究, 2002, 18(3): 29-30, 8. doi: 10.3969/j.issn.1006-2343.2002.03.009WUY F, ZHOUZH Y. Design calculation and analysis of flexure hinge[J]. Machine Design and Research, 2002, 18(3): 29-30, 8.(in Chinese). doi: 10.3969/j.issn.1006-2343.2002.03.009
[35] G M CHEN, X Y LIU, H W GAO et al. A generalized model for conic flexure hinges. The Review of Scientific Instruments, 80(2009).
[36] N LOBONTIU, J S N PAINE, E O'MALLEY et al. Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations. Precision Engineering, 26, 183-192(2002).
[37] L J LI, D ZHANG, S GUO et al. Design, modeling, and analysis of hybrid flexure hinges. Mechanism and Machine Theory, 131, 300-316(2019).
[38] T M LI, J L ZHANG, Y JIANG. Derivation of empirical compliance equations for circular flexure hinge considering the effect of stress concentration. International Journal of Precision Engineering and Manufacturing, 16, 1735-1743(2015).
[39] Y S DU, T M LI. Empirical compliance equations for conventional single-axis flexure hinges. SN Applied Sciences, 1, 1463(2019).
[40] M C ALGRAIN, M K WOEHRER. Determination of attitude jitter in small satellites, 2739, 215-228(1996).
[41] 李醒飞, 周新力, 吴腾飞, 等. 一种MHD角速度传感器与MEMS陀螺仪组合测量系统信号融合的方法[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(2): 159-166.LIX F, ZHOUX L, WUT F, et al. A method of signal fusion for combination measurement system of MHD angular rate sensor and MEMS gyro[J]. Journal of Tianjin University (Science and Technology), 2018, 51(2): 159-166.(in Chinese)
[42] T IWATA, T KAWAHARA, N MURANAKA et al. High-bandwidth attitude determination using jitter measurements and optimal filtering(2009).
[43] 李醒飞, 韩佳辰, 刘帆. 基于Allan方差解耦自适应滤波的MHD/MEMS信号融合方法[J]. 中国惯性技术学报, 2020, 28(2): 237-241.LIX F, HANJ C, LIUF. Signal fusion method of MHD-MEMS based on Allan variance decoupling adaptive filter[J]. Journal of Chinese Inertial Technology, 2020, 28(2): 237-241.(in Chinese)
[44] 蒋恺, 李醒飞, 刘帆, 等. 基于自适应平方根滤波的MHD/MEMS信号融合方法[J]. 传感技术学报, 2022, 35(9): 1203-1209.JIANGK, LIX F, LIUF, et al. Signal fusion method of MHD-MEMS base on adaptive square-root filtering[J]. Chinese Journal of Sensors and Actuators, 2022, 35(9): 1203-1209.(in Chinese)
[45] 李栋. 基于MHD的宽频惯性稳定平台的开环传递函数研究[D]. 天津: 天津大学, 2019.LID. Study on the Open-loop Transformation of Wide Bandwidth Inertial Reference Stabilization Platform Based on MHD Sensor[D].Tianjin: Tianjin University, 2019. (in Chinese)
[46] 李醒飞, 郑安琪, 拓卫晓, 等. 宽频惯性基准谐振抑制陷波器参数优化方法[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(8):852-860.LIX F, ZHENGA Q, TUOW X, et al. Optimization method of Notch filter parameters in resonant suppression of high-bandwidth inertial reference unit[J]. Journal of Tianjin University (Science and Technology), 2021, 54(8):852-860.(in Chinese)
[47] Z ZHOU, X F LI, W X TUO et al. A resonance suppression method in platform style inertial reference unit via particle swarm optimization Notch filter. The Review of Scientific Instruments, 92(2021).
[48] 杨明, 郝亮, 徐殿国. 基于自适应陷波滤波器的在线机械谐振抑制[J]. 哈尔滨工业大学学报, 2014, 46(4): 63-69. doi: 10.11918/j.issn.0367-6234.2014.04.011YANGM, HAOL, XUD G. Online suppression of mechanical resonance based on adapting Notch filter[J]. Journal of Harbin Institute of Technology, 2014, 46(4): 63-69.(in Chinese). doi: 10.11918/j.issn.0367-6234.2014.04.011
[49] 康逸儒, 沈汉林, 罗欣. 基于SDFT和自适应三参数陷波器的快速机械谐振抑制[J]. 微电机, 2018, 51(5): 25-30. doi: 10.3969/j.issn.1001-6848.2018.05.006KANGY R, SHENH L, LUOX. Fast suppression of mechanical resonance based on SDFT and adapting three parameters Notch filter[J]. Micromotors, 2018, 51(5): 25-30.(in Chinese). doi: 10.3969/j.issn.1001-6848.2018.05.006
[50] 龚文全, 罗炳章. 基于自适应陷波滤波器的伺服系统谐振频率估计及抑制[J]. 电机与控制应用, 2019, 46(11): 37-42, 93.GONGW Q, LUOB Z. Resonance frequency estimation and suppression of servo system based on adaptive Notch filter[J]. Electric Machines & Control Application, 2019, 46(11): 37-42, 93.(in Chinese)
[51] 邓久强. 光电跟踪系统中的扰动观测器方法研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2022.DENGJ Q. Research on Disturbance Observer Based Control Methods in Photoelectric Tracking System[D].Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2022. (in Chinese)
[52] 任维. 运动平台下光电跟踪系统的抗扰控制技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020.RENW. Research on Anti-interference Control Technology of Optoelectronic Tracking System Under Moving Platform[D].Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020. (in Chinese)
[53] C DENG, Y MAO, G REN. MEMS inertial sensors-based multi-loop control enhanced by disturbance observation and compensation for fast steering mirror system. Sensors, 16, 1920(2016).
[54] C DENG, T TANG, Y MAO et al. Enhanced disturbance observer based on acceleration measurement for fast steering mirror systems. IEEE Photonics Journal, 9, 2695484(2017).
[55] J Q DENG, W C XUE, X ZHOU et al. On disturbance rejection control for inertial stabilization of long-distance laser positioning with movable platform. Measurement and Control, 53, 1203-1217(2020).
[56] J Q DENG, X ZHOU, Y MAO. On vibration rejection of nonminimum-phase long-distance laser pointing system with compensatory disturbance observer. Mechatronics, 74, 102490(2021).
[57] Y LUO, W REN, Y M HUANG et al. Feedforward control based on error and disturbance observation for the CCD and fiber-optic gyroscope-based mobile optoelectronic tracking system. Electronics, 7, 223(2018).
[58] Z ZHOU, X F LI, W X TUO. Design of disturbance suppression controller for optical inertial reference unit, 8, 178-186(2022).
[59] Y MAO, J Q DENG, X ZHOU et al. The frequency-domain fusion virtual multi-loop feedback control system with measured disturbance feedforward method in telescopes. Electronics, 8, 1103(2019).
[60] K NIE, W REN, X ZHOU et al. Virtual dual-loop feedback control with model-construction linear extended state observer for free space optical communication. Sensors, 19, 3846(2019).
[61] 董瑶海. 航天器微振动: 理论与实践[M]. 北京: 中国宇航出版社, 2015.DONGY H. Micro-Vibration of Spacecraft: Theory and Practice[M]. Beijing: China Aerospace Press, 2015.(in Chinese)
[62] 宋婷婷, 马晶, 谭立英, 等. 美国月球激光通信演示验证: 实验设计和后续发展[J]. 激光与光电子学进展, 2014, 51(4): 040004. doi: 10.3788/lop51.040004SONGT T, MAJ, TANL Y, et al. Experiment design and development of the lunar laser communication demonstration in USA[J]. Laser & Optoelectronics Progress, 2014, 51(4): 040004.(in Chinese). doi: 10.3788/lop51.040004
[63] M S WEATHERWAX, K B DOYLE. Vibration analysis and testing for the LLST optical module, 142-148(2014).
[64] C HEESE, Z SODNIK, I CARNELLI. Design of the optical communication system for the asteroid impact mission, 10562, 842-849(2017).
[65] D M BOROSON, A BISWAS, B L EDWARDS. MLCD: overview of NASA's Mars laser communications demonstration system, 5338, 16-28(2004).
[66] 李浩洋, 刘兆军, 徐彭梅. 浅谈空间光学遥感器稳像技术[J]. 航天返回与遥感, 2010, 31(6): 52-57. doi: 10.3969/j.issn.1009-8518.2010.06.008LIH Y, LIUZ J, XUP M. An overview on image stabilization method of space-born remote sensing systems[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(6): 52-57.(in Chinese). doi: 10.3969/j.issn.1009-8518.2010.06.008
[67] R G YUE, H M WANG, T JIN et al. Image motion measurement and image restoration system based on an inertial reference laser. Sensors, 21, 3309(2021).
[68] 李赓. 量子通信技术研究现状[J]. 电子元器件与信息技术, 2022, 6(3): 111-113.LIG. Research status of quantum communication technology[J]. Electronic Components and Information Technology, 2022, 6(3): 111-113.(in Chinese)
[69] C Y LU, Y CAO, C Z PENG et al. Micius quantum experiments in space. Reviews of Modern Physics, 94(2022).
[70] 中国“墨子号”实现1200公里地表量子态传输新纪录[J]. 信息网络安全, 2022, 22(6): 95.China's "Mozi" achieves a new record of1200km surface quantum state transmission [J]. Information Network Security, 2022, 22(6): 95. (in Chinese)
[71] 彭木根, 张世杰, 许宏涛, 等. 低轨卫星通信遥感融合:架构、技术与试验[J]. 电信科学, 2022, 38(1): 13-24. doi: 10.11959/j.issn.1000-0801.2022021PENGM G, ZHANGSH J, XUH T, et al. Communication and remote sensing integrated LEO satellites: architecture, technologies and experiment[J]. Telecommunications Science, 2022, 38(1): 13-24.(in Chinese). doi: 10.11959/j.issn.1000-0801.2022021
[72] 北京邮电大学党委宣传部. “北邮-银河号”卫星成功发射 低轨宽带卫星星座组网及通信-遥感融合在轨试验阶段正式开启 [EB/OL]. (2022-03-07) [2023-8-15]. https://www.bupt.edu.cn/info/1079/84957.htm. doi: 10.1117/12.3021081Propaganda Department of Party Committee, Beijing University of Posts and Telecommunications. "BUP-Yinhe" satellite successfully launched low-orbit broadband satellite constellation Networking and in-orbit test phase of Communication-Remote sensing fusion officially started [EB/OL]. (2022-03-07) [2023-8-15]. https://www.bupt.edu.cn/info/1079/84957.htm.(in Chinese). doi: 10.1117/12.3021081
[73] 新华每日电讯. 2030年,300颗星组网运行[EB/OL]. (2023-07-13) [2023-8-15]. http://www.news.cn/mrdx/2023-07/13/c_1310732376.htm.Xinhua daily telegraph. 2030, 300star network run [EB/OL]. (2023-07-13) [2023-8-15]. HTTP://http://www.news.cn/mrdx/2023-07/13/c_1310732376.htm.(in Chinese)