• Journal of Atmospheric and Environmental Optics
  • Vol. 13, Issue 5, 321 (2018)
Xiaomin TIAN1、2, Dong LIU1、*, Jiwei XU1、2, Zhenzhu WANG1, Bangxin WANG1, Decheng WU1, Zhiqing ZHONG1, Chenbo XIE1, and Yingjian WANG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2018.05.001 Cite this Article
    TIAN Xiaomin, LIU Dong, XU Jiwei, WANG Zhenzhu, WANG Bangxin, WU Decheng, ZHONG Zhiqing, XIE Chenbo, WANG Yingjian. Review of Lidar Technology for Atmosphere Monitoring[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 321 Copy Citation Text show less
    References

    [1] Wang Yingjian, Hu Shunxing, Zhou Jun,et al. Measurement of Atmospheric Parameters by Lidar[M]. Beijing: Science Press, 2014(in Chinese).

    [2] Northend C A, Honey R C, Evans W E. Laser radar (lidar) for meteorological observations[J].Review of Scientific Instruments, 1966, 37(4): 393-400.

    [3] Yin Qing, He Jinhai, Zhang Hua. Application of laser radar in monitoring meteorological and atmospheric environment[J]. Journal of Meteorology and Environment, 2009, 25(5): 48-5(in Chinese).

    [4] Spinhirne J D. Micro pulse lidar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 48-55.

    [5] Chuang T, Burns P, Walters E B,et al. Space-based multi-wavelength solid-state lasers for NASA’s Cloud Aerosol Transport System for International Space Station (CATS-ISS)[C]. Proceedings of SPIE, 2013, 8599: 85990N.

    [6] Fiocco G, Smullin L D. Detection of scattering layers in the upper atmosphere (60~140 km) by optical radar[J]. Nature, 1963, 199(4900): 1275-1276.

    [7] Ligda M G H. Meteorological observations with a pulsed laser radar[C].Proceedings 1st Conference on Laser Technology, 1963: 63-72.

    [8] Charlson R J, Schwartz S E, Hales J M,et al. Climate forcing by anthropogenic aerosols[J]. Science, 1992, 255(5043): 423-430.

    [9] Klett J D. Stable analytical inversion solution for processing lidar returns[J].Applied Optics, 1981, 20(2): 211-220.

    [10] Fernald F G. Analysis of atmospheric lidar observations some comments[J].Applied Optics, 1984, 23(5): 652-653.

    [11] Chen Min, Sun Dongsong, Li Hongjing,et al. Detective method and analysis of atmospheric slant visibility for lidar[J]. Infrared and Laser Engineering, 2006, 35(2): 156-160(in Chinese).

    [12] Wang Qingmei, Zhang Yimo. Development of meteorological lidar[J].Meteorological Science and Technology, 2006, 34(3): 246-249(in Chinese).

    [13] Zhou Jun, Yue Guming, Jin Chuanjia,et al. Two-wavelength Mie lidar for monitoring of tropospheric aerosol[J]. Acta Optica Sinica, 2000, 20(10): 1412-1417(in Chinese).

    [14] Liu Jun, Hua Dengxin, Li Yan,et al. Design of a compact Mie lidar system[J]. Journal of Xi’an University of Technology, 2007, 23(1): 1-5(in Chinese).

    [15] Song Xiaoquan, Liu Zhishen, He Yan,et al. Experimental researches of atmosphere lidar system working by day[J]. Journal of Ocean University of Qingdao, 2001, 31(4): 593-599(in Chinese).

    [16] Bu Lingbing, Guo Jinqiu, Tian Li,et al. Rayleigh-Raman lidar used for atmospheric temperature profile measurement[J]. High Power Laser and Particle Beams, 2010, 22(7): 1449-1452(in Chinese).

    [17] Cheng Xuewu, Yang Guotao, Yang Yong,et al. Na layer and K layer simultaneous observation by lidar[J]. Chinese Journal of Lasers, 2011, 38(2): 233-237(in Chinese).

    [18] Iwasaka Y, Hayashida S. The effects of the volcanic eruption of St. Helens on the polarization properties of stratospheric aerosols-Lidar measurement at Nagoya[J].Journal of the Meteorological Society of Japan. Ser. II, 1981, 59(4): 611-614.

    [19] Schotland R M, Sassen K, Stone R. Observations by lidar of linear depolarization ratios for hydrometeors[J].Journal of Applied Meteorology, 1971, 10(5): 1011-1017.

    [20] Sassen K. The polarization lidar technique for cloud research: A review and current assessment[J].Bulletin of the American Meteorological Society, 1991, 72(12): 1848-1866.

    [21] Wang Z Z, Liu D, Zhou J,et al. Experimental determination of the calibration factor of polarization-Mie lidar[J]. Optical Review, 2009, 1(5): 566-570.

    [22] Tomasi C, Vitale V, Petkov B,et al. Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres[J]. Applied Optics, 2005, 44(16): 3320-3341.

    [23] Liu Dong, Qi Fudi, Jin Chuanjia,et al. polarization lidar observations of cirrus clouds and Asian dust aerosols over Hefei[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(6): 1093-1100(in Chinese).

    [24] Liu D, Wang Z, Liu Z,et al. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements[J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D16): 1-15.

    [25] Murayama T, Sugimoto N, Uno I,et al. Ground-based network observation of Asian dust events of April 1998 in east Asia[J]. Journal of Geophysical Research: Atmospheres, 2001, 10(D16): 18345-18359.

    [26] Song Zhengfang.Application of Atmospheric Optics Foundation[M]. Beijing: Meteorology Press, 1990(in Chinese).

    [27] Melfi S H, Lawrence J D, McCormick M P. Observation of Raman scattering by water vapor in the atmosphere[J].Applied Physics Letters, 1969, 15(9): 295-297.

    [28] Ansmann A, Riebesell M, Wandinger U,et al. Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio[J]. Applied Physics B, 1992, 55(1): 18-28.

    [29] Xie Chenbo, Zhou Jun, Yue Guming,et al. New mobile raman lidar for measurement of tropospheric water vapor[J]. Acta Optica Sinica, 2006, 2(9): 1281-128(in Chinese).

    [30] Yu Haili, Hu Shunxing, Wu Xiaoqing,et al. Measurement of CO2 concentration profiles of lower-troposphere with Raman lidar[J]. Acta Optica Sinica, 2012, 32(8): 21-2(in Chinese).

    [31] Li Tao, Qi Fudi, Yue Guming,et al. Raman lidar system for the measurements of water vapor mixing ratio in the atmosphere[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(6): 843-854(in Chinese).

    [32] Hua Dengxin, Liu Jun. Raman lidar system for meteorological and atmospheric environmentobservation: 200610105193.2[P]. 2007-06-27(in Chinese).

    [33] Zhao P, Zhang Y, Wang L,et al. Capability of Raman lidar for monitoring the variation of atmospheric CO2 profile[J]. Chinese Physics B, 2008, 17(1): 335-342.

    [34] Zhao P, Zhang Y, Wang L,et al. Measurement of tropospheric CO2 and aerosol extinction prof iles with Raman lidar[J]. Chinese Optics Letters, 2008, (3): 157-160.

    [35] Hu Shunxing, Zhao Peitao, Wang Shaolin,et al. ARL-1 Raman lidar system for atmospheric CO2 measurements[J]. Journal of Atmospheric and Environmental Optical, 2009, 4(6): 401-405(in Chinese).

    [36] Ansmann A, Wandinger U, Riebesell M,et al. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar[J]. Applied Optics, 1992, 31(33): 7113-7131.

    [37] Wandinger U, Ansmann A. Experimental determination of the lidar overlap profile with Raman lidar[J].Applied Optics, 2002, 41(3): 511-514.

    [38] Liu Dong, Tao Zongming, Wu Decheng,et al. Development of Three-Wavelength-Raman-polarization lidar system and case study[J]. Acta Optica Sinica, 2013, 33(2): 223-228(in Chinese).

    [39] Cooney J A. Uses of Raman scattering for remote sensing of atmospheric properties of meteorological significance[J].Optical Engineering, 1983, 22(3): 292-301.

    [40] Leonard D A. Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser[J].Nature, 1967, 21(5111): 142-143.

    [41] Hauchecorne A, Chanin M L. Density and temperature profiles obtained by lidar between 35 and 70 km[J].Geophysical Research Letters, 1980, 7(8): 565-568.

    [42] Wu Yonghua, Li Tao, Zhou Jun,et al. Raman lidar measured temperature profiles in the mid-and upper troposphere[J]. Atmospheric Sciences, 2002, 2(5): 702-708(in Chinese).

    [43] Cooney J. Measurement of atmospheric temperature profiles by Raman backscatter[J].Journal of Applied Meteorology, 1972, 11(1): 108-112.

    [44] Arshinov Y, Bobrovnikov S, Serikov I,et al. Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer[J]. Applied Optics, 2005, 44(17): 3593-3603.

    [45] Arshinov Y, Bobrovnikov S. Use of a Fabry-Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules[J].Applied Optics, 1999, 38(21): 4635-4638.

    [46] Behrendt A, Reichardt J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator[J].Applied Optics, 2000, 39(9): 1372-1378.

    [47] Behrendt A, Nakamura T, Onishi M,et al. Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient[J]. Applied Optics, 2002, 41(36): 7657-7666.

    [48] Liu Yuli, Zhang Yinchao, Su Jia,et al. Rotational Raman lidar for atmospheric temperature profiles measurements in the lower air[J]. Opto-Electronic Engineering, 2006, 33(10): 43-48(in Chinese).

    [49] Wang Shaolin, Su Jia, Zhao Peitao,et al. A pure rotational Raman-lidar based on three-stage Fabry-Perot etalons for monitoring atmospheric temperature[J]. Acta Physica Sinica, 2008, 57(6): 3941-3947(in Chinese).

    [50] Shang Zhen, Xie Chenbo, Zhong Zhiqing,et al. Raman lidar for measurement of tropospheric water vapor[J]. Infrared and Laser Engineering, 2016, 45(12): 184-189(in Chinese).

    [51] Li Bo, Hua Dengxin, Zhou Yan,et al. Synthetic multilevel quality analysis and control technique for raman lidar temperature detection[J]. Acta Optica Sinica, 2017, 37(4): 325-337(in Chinese).

    [52] Goldsmith J E M, Blair F H, Bisson S E,et al. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols[J]. Applied Optics, 1998, 37(21): 4979-4990.

    [53] Kim D H, Cha H K, Lee J M,et al. Pure rotational Raman lidar for atmospheric temperature measurements[J]. Journal of the Korean Physical society, 2001, 39(5): 838-841.

    [54] Eloranta E E.High Spectral Resolution Lidar[M]// Lidar. Berlin: Springer, 2005: 143-163.

    [55] She C Y, Alvarez R J, Caldwell L M,et al. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles[J]. Optics Letters, 1992, 17(7): 541-543.

    [56] Fiocco G, DeWolf J B. Frequency spectrum of laser echoes from atmospheric constituents and determination of aerosol content of air[J].Journal of the Atmospheric Sciences, 1968, 25(3): 488-496.

    [57] Liu Dong, Yang Yongying, Zhou Yudi,et al. High spectral resolution lidar for atmosphere remote sensing:a review[J]. Infrared and Laser Engineering, 2015, 44(9): 2535-254(in Chinese).

    [58] Shipley S T, Tracy D H, Eloranta E W,et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation[J]. Applied Optics, 1983, 22(23): 3716-3724.

    [59] Shimizu H, Lee S A, She C Y. High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters[J].Applied Optics, 1983, 22(9): 1373-1381.

    [60] Piironen P, Eloranta E W. Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter[J].Optics Letters, 1994, 19(3): 234-236.

    [61] Hair J W, Caldwell L M, Krueger D A,et al. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles[J]. Applied Optics, 2001, 40(30): 5280-5294.

    [62] Liu D, Hostetler C, Miller I,et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar[J]. Optics Express, 2012, 20(2): 1406-1420.

    [63] Song Xiaoquan, Guo Jinjia, Yan Zhaoai,et al. Research on atmospheric aerosol optical parameters with high spectral resolution lidar[J]. Progress in Natural Science, 2008, 18(9): 1009-1015(in Chinese).

    [64] Zhu Jinshan, Liu Zhishen, Guo Jinjia. A simulation of a high spectral resolution lidar system foratmosphere temperature[J]. Periodical of Ocean University of China, 2005, 35(5): 863-867(in Chinese).

    [65] Liu Z S, Bi D C, Song X,et al. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements[J]. Optics Letters, 2009, 34(18): 2712-2714.

    [66] Hua Dengxin, Song Xiaoquan. Advances in lidar remote sensing techniques[J].Infrared and Laser Engineering, 2008, 37(sl): 21-27(in Chinese).

    [67] Zhou Xiaolin, Sun Dongsong, Zhong Zhiqing,et al. Development of Doppler wind lidar[J]. Jounal of Atmospheric and Environmental Optics, 2007, 2(3): 161-168(in Chinese).

    [68] Yeh Y, Cummins H Z. Localized fluid flow measurements with an He-Ne laser spectrometer[J].Applied Physics Letters, 1964, 4(10): 176-178.

    [69] Huffaker R M, Hardesty R M. Remote sensing velocities using coherent laser of atmospheric wind solid-state and CO2 systems[J]. Proceedings of the IEEE, 1996, 84(2):181-204.

    [70] Michelangeli G B, Congeduti F, Fiocco G. Measurement of aerosol motion and wind velocity in the lower troposphere by Dopper optical radar[J].Journal of the Atmospheric Sciences, 1972, 29(5): 906-910.

    [71] Korb C L, Gentry B M, Li S X,et al. Theory of the double-edge technique for Doppler lidar wind measurement[J]. Applied Optics, 1998, 37(15): 3097-3104.

    [72] Xia Haiyun.Direct Detection Doppler Wind Lidar Based on Dual Fbary-Peort Etalnos with Aoersol Backscatter[D]. Soochow: Master’s Thesis of Soochow University, 200(in Chinese).

    [73] Chi Ruli, Liu Dong, Zhong Zhiqing,et al. Application and analysis of the dual Fabry-Perot etalon in a direct detection wind lidar[J]. High Power Laser and Particle Beams, 2007, 19(2): 202-20(in Chinese).

    [74] Liu Z S, Wu D, Liu J T,et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter[J]. Applied Optics, 2002, 41(33): 7079-7086.

    [75] Sun D S, Zhong Z Q, Zhou J,et al. Accuracy analysis of the Fabry-Perot Etalon based Doppler wind lidar[J]. Optical Review, 2005, 12(5): 409-414.

    [76] Zhang Yinchao, Hu Huanling, Shao Shisheng,et al. Measurement of SO2, NO2 and O3 in Beijing by DIAL[J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 346-350(in Chinese).

    [77] Goers U B. Laser remote sensing of sulfur dioxide and ozone with the mobile differential absorption lidar ARGOS[J].Optical Engineering, 1995, 34(11): 3097-3102.

    [78] Zhang Yinchao, Hu Huanling, Tan Kun,et al. Development of a mobile lidar system for air pollution monitoring[J]. Acta Optica Sinica, 2004, 24(8): 1025-1031(in Chinese).

    [79] Kolsch H J, Rairoux P, Wolf J P,et al. Simultaneous NO and NO2 DIAL measurement using BBO crystals[J]. Applied Optics, 1989, 28(11): 2052-2056.

    [80] Riris H, Burris J, Krainak M,et al. A 1.57 μm DIAL lidar system for range resolved measurements of atmospheric CO2[C]. Conference on Lasers and Electro-Optics, Optical Society of America, 2006.

    [81] Uchiumi M, Vasa N J, Fujiwara M,et al. Development of DIAL for CO2 and CH4 in the atmosphere[C]. Proceedings of SPIE, 2003, 4893: 141-149.

    [82] Ambrico P F, Amodeo A, Di Girolamo P,et al. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region[J]. Applied Optics, 2000, 39(36): 6847-6865.

    [83] Browell E V, Ismail S, Grossmann B E. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720 nm region[J].Applied Optics, 1991, 30(12): 1517-1524.

    [84] Wulfmeyer V, Walther C. Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory[J].Applied Optics, 2001, 40(30): 5304-5320.

    [85] Wulfmeyer V, Walther C. Future performance of ground-based and airborne water-vapor differential absorption lidar. II. Simulations of the precision of a near-infrared, high-power system[J].Applied Optics, 2001, 40(30): 5321-5336.

    [86] Schotland R M. Some observations of the vertical profile of water vapor by means of a laser optical radar(Measurement and theory, including signal to noise and transfer function calculations, of atmospheric water vapor using ruby laser optical radar)[C].Proc. 4th Symposium on Remote Sensing of Environment, University of Michigan, 1966: 273-283

    [87] Ancellet G R, Ravetta F O. Compact airborne lidar for tropospheric ozone: description and field measurements[J].Applied Optics, 1998, 37(24): 5509-5521.

    [88] Nakazato M, Nagai T, Sakai T,et al. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide[J]. Applied Optics, 2007, 4(12): 2269-2279.

    [89] Gimmestad G G.Differential-Absorption Lidar for Ozone and Industrial Emissions[M]// Lidar. Berlin: Springer, 2005: 187-212.

    [90] McGee T J, Gross M, Ferrare R,et al. Raman DIAL measurements of strataspheric ozone in the presence of volcanic aerosols[J]. Geophysical Research Letters, 1993, 20(10): 955-958.

    [91] Wang Z, Nakane H, Hu H,et al. Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols[J]. Applied Optics, 1997, 3(6):1245-1252.

    [92] Wang Zhien, Hu Huanling, Zhou Jun. Dual differential absorption lidar: a new method to reduce effectively the effect of aerosols on ozone measurement[J].Acta Meteorologica Sinica, 1996, 54(4): 437-44(in Chinese).

    [93] Hu Shunxing, Hu Huanling, Zhou Jun,et al. Comparison of tropospheric ozone measurements between three-wavelength dual-dialand two-wave-length dial method[J].Acta Meteorologica Sinica, 2002, 60(4): 486-493(in Chinese).

    [94] Zhang Yinchao, Hu Huanling, Tan Kun,et al. A mobile lidar system for air pollution measurements[J]. Optoelectronic Technology and Information, 2001, 14(3): 1-5(in Chinse).

    [95] Hu Huanling, Wang Zhien, Wu Yonghua,et al. UV-DIAL system for measurements of stratospheric ozone[J]. Scientia Atmospherica Sinica, 1998, 22(5): 701-708(in Chinese).

    [96] Hu Shunxing, Hu Huanling, Wu Yonghua,et al. L625 differential absorption lidar system for tropospheric ozone measurements[J]. Acta Optica Sinica, 2004, 24(5): 597-601(in Chinese).

    [97] Liu Hao, Shu Rong, Hong Guanglie,et al. Continuous-wave modulation differential absorption lidar system for CO2 measurement[J]. Acta Physica Sinica, 2014, 63(10): 209-214(in Chinese).

    [98] Bézy J L. ESA’s earth observation lidar missions and critical technology developments[C].ICSO Rhodes, 2010: 4-8.

    [99] Bowman M R, Gibson A J, Sandford M C W. Observation of mesospheric Na atoms by tuner laser radar[J].Nature, 1969, 221: 456-458.

    [100] Gardner C S. Sodium resonance fluorescence lidar applications in atmospheric science and astronomy[C].Proceedings of the IEEE, 1989, 77(3): 408-418.

    [101] Xu Li, Hu Xiong, Cheng Yongqiang,et al. Simulation of echo-photon counts of a Sodium Doppler Lidar and retrievals of atmospheric parameters[J]. Chinese Journal of Geophysics, 2010, 53(7): 1520-1528(in Chinese).

    [102] Liu Xiaoqin, Hu Shunxing, Li Shen,et al. Lidar for monitoring sodium layer of atmosphere[J]. Opto-Electronic Engineering, 2006, 33(9): 1-4(in Chinese).

    [103] Hu Xiong, Yan Zhaoai, Guo Shangyong,et al. Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region[J]. Chinese Science Bulletin, 2011, 5(3): 247-253(in Chinese).

    [104] Fiocco G, Benedetti-Michelangeli G, Maischberger K,et al. Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar[J]. Nature Physical Science, 1971, 229(3): 78-79.

    [105] Kishore Kumar G, Venkat Ratnam M, Patra A K,et al. Mean thermal structure of the low-latitude middle atmosphere studied using Gadanki Rayleigh lidar, Rocket, and SABER/TIMED observations[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23): D23106.

    [106] Wu Yonghua, Hu Huanling, Hu Shunxing,et al. Temperature measurement with Rayleigh scattering lidar in the mid and upper stratosphere[J]. Chinese Journal of Lasers, 2001, 28(2): 137-140(in Chinese).

    [107] Wu Yonghua, Hu Huanling, Hu Shunxing,et al. Atmospheric density and temperature measurement with lidar in the middle and upper stratospere[J]. Chinses Journal of Quantum Electronics, 2000, 17(5): 426-431(in Chinese).

    [108] Chang Qihai.By Rayleigh Lidar Observing and Studying The Middle Atomosphere over Wuhan[D]. Wuhan: Doctorial Dissertation of Graduate School of the Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics), 2005(in Chinese).

    CLP Journals

    [1] LIU Jiaxin, YUN Long, SHAO Shiyong, CHENG Xueling, SONG Xiaoquan. Observation of Turbulence Using Doppler Wind Lidar in Shenzhen[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 383

    TIAN Xiaomin, LIU Dong, XU Jiwei, WANG Zhenzhu, WANG Bangxin, WU Decheng, ZHONG Zhiqing, XIE Chenbo, WANG Yingjian. Review of Lidar Technology for Atmosphere Monitoring[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 321
    Download Citation