• Acta Physica Sinica
  • Vol. 68, Issue 4, 040601-1 (2019)
Zhi-Hong Ren, Yan Li, Yan-Na Li, and Wei-Dong Li*
DOI: 10.7498/aps.68.20181965 Cite this Article
Zhi-Hong Ren, Yan Li, Yan-Na Li, Wei-Dong Li. Development on quantum metrology with quantum Fisher information[J]. Acta Physica Sinica, 2019, 68(4): 040601-1 Copy Citation Text show less

Abstract

Quantum metrology is one of the hot topics in ultra-cold atoms physics. It is now well established that with the help of entanglement, the measurement sensitivity can be greatly improved with respect to the current generation of interferometers that are using classical sources of particles. Recently, Quantum Fisher information plays an important role in this field. In this paper, a brief introduction on Quantum metrology is presented highlighting the role of the Quantum Fisher information. And then a brief review on the recent developments for i) criteria of multi-particle entanglement and its experimental generation; ii) linear and non-linear atomic interferometers; iii) the effective statistical methods for the analysis of the experimental data.
$P(\varepsilon |\theta ) = {\rm{Tr}}[{{\hat E}}(\varepsilon )\hat \rho (\theta )].$ (1)

View in Article

$\hat \rho (0) = {\hat \rho ^{(1)}}(0) \otimes {\hat \rho ^{(2)}}(0) \otimes {\hat \rho ^{(3)}}(0) \otimes \ldots \otimes {\hat \rho ^{(m)}}(0).$ (2)

View in Article

$\hat E({\varepsilon }) = {\hat E^{(1)}}({\varepsilon _1}) \otimes {{\hat E}^{(2)}}({\varepsilon _2}) \otimes {\hat E^{(3)}}({\varepsilon _3}) \otimes \cdots \otimes {\hat E^{(m)}}({\varepsilon _m}).$ (3)

View in Article

$P({{\varepsilon }}|\theta ) = \prod\limits_{i = 1}^m {{P_i}} ({\varepsilon _i}|\theta ),$ (4)

View in Article

$L({{\varepsilon }}|\theta ) = \ln P({{\varepsilon }}|\theta ) = \sum\limits_{i = 1}^m {\ln } {P_i}({\varepsilon _i}|\theta ).$ (5)

View in Article

${\left\langle {\varTheta} \right\rangle _\theta } = \sum\limits_{{\varepsilon }} P ({\varepsilon }|\theta ){\varTheta}({\varepsilon }),$ (6)

View in Article

$\left( {{\text{Δ}}{\varTheta}} \right)_\theta ^2 = \sum\limits_{{\varepsilon }} P ({\varepsilon }|\theta ){\left( {{\varTheta}({\varepsilon }) - {{\left\langle {\varTheta} \right\rangle }_\theta }} \right)^2},$ (7)

View in Article

$\mathop {\lim }\limits_{m \to \infty } Pr\left( {|{\varTheta}({\varepsilon }) - \theta | > \delta } \right) = 0,$ (8)

View in Article

$\left( {{\text{Δ}}{\varTheta}} \right)_\theta ^2 \ge {\left( {{\text{Δ}}{{\varTheta}_{\rm {CR}}}} \right)^2} \equiv \dfrac{{{{\left( {\dfrac{{\partial \left\langle {\varTheta} \right\rangle }}{{\partial \theta }}} \right)}^2}}}{{F(\theta )}},$ (9)

View in Article

$F(\theta ) = {\left\langle {{{\left( {\dfrac{{ \partial L({\varepsilon }|\theta )}}{{\partial \theta }}} \right)}^2}} \right\rangle _\theta } = \sum\limits_{{{\varepsilon}}} {\dfrac{1}{{P({\varepsilon }|\theta )}}} {\left( {\dfrac{{\partial P({\varepsilon }|\theta )}}{{\partial \theta }}} \right)^2},$ (10)

View in Article

$\dfrac{\partial L({{\varepsilon}}|\theta)} {\partial \theta} = \lambda_{\theta} \left( {\varTheta}({{\varepsilon}})- \langle {\varTheta} \rangle_{\theta} \right), \forall {{\varepsilon}},$ (11)

View in Article

$F_{\rm Q} [\hat{\rho}(\theta)] = \max_{\hat{E}({{\varepsilon}})} F [ \hat{\rho}(\theta), \{ \hat{E}({{\varepsilon}}) \} ]. $ (12)

View in Article

$F_{\rm Q} [\hat{\rho}(\theta)] = {\rm{Tr}}[\hat{\rho}(\theta) \hat{L}_{\theta}^2],$ (13)

View in Article

$\dfrac{\partial \hat{\rho}(\theta)}{\partial \theta} = \dfrac{1}{2} \left( \hat{\rho}(\theta)\hat{L}_{\theta} + \hat{L}_{\theta} \hat{\rho}(\theta) \right). $ (14)

View in Article

$\left( {\text{Δ}}{\varTheta} \right )_{\theta}^2 \geqslant \left( {\text{Δ}}{\varTheta}_{\rm {CR}} \right )_{\theta}^2 \geqslant \left( {\text{Δ}}{\varTheta}_{\rm {QCR}} \right )_{\theta}^2,$ (15)

View in Article

$\Re ({\rm {Tr}}[\hat \rho (\theta ){\hat L_\theta }\hat E({\varepsilon })]) = 0,\forall {\varepsilon },$ (16)

View in Article

$\hat \rho (\theta )\left( {\mathbb{1} - {\lambda _{\theta ,{\varepsilon }}}{{\hat L}_\theta }} \right)\hat E({\varepsilon }) = 0,\forall {\varepsilon },$ (17)

View in Article

$P\left({{\varepsilon}} | \theta \right) = \sum\limits_{k} \gamma_k P_k \left({{\varepsilon}}| \theta \right).$ (18)

View in Article

$F(\theta) \leqslant \sum\limits_{k} \gamma_k F_k \left( \theta \right),$ (19)

View in Article

$F_{\rm Q} \left[ \sum\limits_k \gamma_k \hat{\rho}_k (\theta) \right] \leqslant \sum\limits_{k} \gamma_k F_{\rm Q} \left( \hat{\rho}_k (\theta) \right).$ (20)

View in Article

$F(\theta) = \sum\limits_{i = 1}^m F_i(\theta),$ (21)

View in Article

$F(\theta) = m F' (\theta),$ (22)

View in Article

$\left( {\text{Δ}}{\varTheta}_{\rm {CR}} \right )^2 = \dfrac{\left( \dfrac{\partial \left\langle {\vartheta} \right \rangle }{\partial \theta} \right)^2}{m F'(\theta)},$ (23)

View in Article

$F'(\theta) = \sum\limits_{\varepsilon} \dfrac{1}{P(\varepsilon |\theta)} \left(\dfrac{\partial P(\varepsilon |\theta)}{\partial \theta} \right)^2.$ (24)

View in Article

$F_{\rm Q}[\hat{\rho}(\theta)] = \sum\limits_{i = 1}^m F_{\rm Q}[\hat{\rho}^{(i)}(\theta)],$ (25)

View in Article

${F_{\rm Q}}[\hat \rho (\theta )] \!=\!\! \sum\limits_{k,k'} {{p_k}} |\langle k|{\hat L_\theta }|k'\rangle {|^2} \!=\!\! \sum\limits_{k,k'} {\dfrac{{{p_k} \!+\! {p_{k'}}}}{2}} |\langle k|{\hat L_\theta }|k'\rangle {|^2}.$ (26)

View in Article

$F_{\rm Q}[\hat{\rho}(\theta)] = \sum\limits_{k,k'} \dfrac{2}{p_k+p_{k'} } |\langle k| \partial_{\theta} \hat{\rho}(\theta) | k' \rangle|^2.$ (27)

View in Article

$\begin{split}{\partial _\theta }\hat \rho (\theta ) = & \sum\limits_k {({\partial _\theta }{p_k})|k\rangle \langle } k| + \sum\limits_k {{p_k}} |{\partial _\theta }k\rangle \langle k| \\ & + \sum\limits_k {{p_k}} |k\rangle \langle {\partial _\theta }k|,\end{split}$ ()

View in Article

$\langle k|{\partial _\theta }\hat \rho (\theta )|k'\rangle = \left( {{\partial _\theta }{p_k}} \right){\delta _{k,k'}} + ({p_k} - {p_{k'}})\langle {\partial _\theta }k|k'\rangle .$ ()

View in Article

$\hat{L}_{\theta} = \sum\limits_k \dfrac{\partial_{\theta} p_k} {p_k} |k\rangle \langle k | + 2 \sum\limits_{k,k'} \dfrac{p_k-p_{k'}} {p_k+p_{k'}} |k\rangle \langle \partial_{\theta} k |k' \rangle \langle k' | ,$ (28)

View in Article

$F_{\rm Q}[\hat{\rho}(\theta)] = \sum\limits_k \dfrac{\left( \partial_{\theta} p_k \right)^2} {p_k} + 2 \sum\limits_{k,k'} \dfrac{\left(p_k-p_{k'}\right)^2} {p_k+p_{k'}} | \langle \partial_{\theta} k |k' \rangle|^2.$ (29)

View in Article

$\hat{L}_{\theta} = 2 |\psi(\theta) \rangle \langle \partial_{\theta} \psi(\theta) |+ 2 |\partial_{\theta} \psi(\theta) \rangle \langle \psi(\theta) | ,$ (30)

View in Article

${F_{\rm Q}}[|\psi (\theta )\rangle ] = 4\left( {\langle {\partial _\theta }\psi (\theta )|{\partial _\theta }\psi (\theta )\rangle - |\langle {\partial _\theta }\psi (\theta )|\psi (\theta )\rangle {|^2}} \right).$ (31)

View in Article

$\hat{\rho}(\theta) = {\rm e}^{-{\rm i}\hat{H} \theta} \hat{\rho}_0 {\rm e}^{+{\rm i}\hat{H} \theta},$ (32)

View in Article

$\{ \hat{\rho}_0,\hat{L}_0 \} = 2 {\rm i} [\hat{\rho}_0,\hat{H}].$ (33)

View in Article

$F_{\rm Q}[\hat{\rho}_0,\hat{H}] = \left( {\text{Δ}}\hat{L}_0 \right)^2.$ (34)

View in Article

$\hat{L}_0 = 2 i \sum\limits_{k,k'} \dfrac{ p_k-p_{k'} }{p_k+p_{k'}} |k\rangle \langle k |\hat{H}|k'\rangle \langle k |,$ (35)

View in Article

$F_{\rm Q}[ \hat{\rho}_0, \hat{H} ] = 2 \sum\limits_{k,k'} \dfrac{\left(p_k-p_{k'} \right)^2}{p_k+p_{k'}} |\langle k |\hat{H}|k'\rangle |^2,$ (36)

View in Article

$\hat{L}_0 = 2 {\rm i} |\psi_0 \rangle \langle \psi_0 |\hat{H} - 2 {\rm i} \hat{H} |\psi_0 \rangle \langle \psi_0 |,$ (37)

View in Article

$F_{\rm Q}[ |\psi_0 \rangle, \hat{H} ] = 4 \left( {\text{Δ}}\hat{H} \right)^2.$ (38)

View in Article

$F \left( \theta \right) \geqslant \dfrac{|\dfrac{{\rm d} \langle \hat{ M} \rangle}{{\rm d}\theta} |^2}{\sum_{\mu} |c_{\mu} -f(\theta) |^2 P\left( \mu | \theta \right) },$ (39)

View in Article

$F \left( \theta \right) \geqslant \dfrac{|\langle [\hat{ M},\hat{H}] \rangle |^2}{\left( {\text{Δ}}\hat{ M} \right)^2 }.$ (40)

View in Article

$F \left( \theta \right) \geqslant | \dfrac{{\rm d} \langle \hat{ M} \rangle } {{\rm d} \theta} |^2 = | \langle [\hat{H},\hat{ M}] \rangle |^2.$ (41)

View in Article

$P({\varTheta}_{\rm {MLE}}|\theta) = \sqrt{\dfrac{m F(\theta)}{2 {\text{π}}}} {\rm e}^{-\dfrac{m F(\theta)}{2} \left( \theta- {\varTheta}_{\rm {MLE}} \right)^2}.$ (42)

View in Article

$\Delta\theta_{\rm{mom}} = \dfrac{{\text{Δ}}\mu} {\sqrt{m} | {\rm d} \bar{\mu}/{\rm d}\theta|}.$ (43)

View in Article

$P\left( \mu | \theta \right) = \dfrac{{\rm e}^{-\left (\mu-\bar{\mu}\right)^2/[2\left({\text{Δ}}\mu \right)^2]}} {\sqrt{2 {\text{π}} \left( {\text{Δ}}\mu \right)^2}},$ (44)

View in Article

$d^2_{\rm H}(P_0,P_{\theta}) = 2 \sum\limits_{\mu} \left( \sqrt{P(\mu|\theta)} -\sqrt{P(\mu|0)} \right)^2,$ (45)

View in Article

$d^2_{\rm H}(P_0,P_{\theta}) = 1-\mathcal{F}_{\rm{cl}}(P_0,P_{\theta}).$ (46)

View in Article

$d^2_{\rm H}(P_0,P_{\theta}) = \dfrac{F(0)}{8} \theta^2+ \mathcal{O}(\theta^3).$ (47)

View in Article

$D_{\rm{KL}}\equiv\underset{\mu }{{ \sum }}P(\mu|\theta_0)\ln \dfrac{P(\mu |\theta_0 )}{P(\mu |\theta_0+{\text{δ}} \theta )},$ (48)

View in Article

$d^2_{\rm H}(\hat{\rho}_0,\hat{\rho}_{\theta}) = 1-\mathcal{F}_{\rm{Q}}(\hat{\rho}_0,\hat{\rho}_{\theta}),$ (49)

View in Article

$|{{\varPsi}_{N,{\rm{cat}}}}\rangle = \dfrac{{| \uparrow {\rangle ^{ \otimes N}} + | \downarrow {\rangle ^{ \otimes N}}}}{{\sqrt 2 }}$ (50)

View in Article

$P(\pm|\theta) = \dfrac{1 \pm V \cos N \theta}{2},$ (51)

View in Article

$F(\theta) = \dfrac{V^2 N^2 \sin^2 N \theta}{1-V^2 \cos^2 N \theta}.$ (52)

View in Article

$| {\varPsi}_{\rm{sep}}\rangle = |{\varPsi}^{(1)}\rangle \otimes |{\varPsi}^{(2)}\rangle \otimes \cdots \otimes |{\varPsi}^{(N)}\rangle,$ (53)

View in Article

$\hat{\rho}_{\rm{sep}} = \sum\limits_q p_q |{\varPsi}_{\rm{ sep},q} \rangle \langle {\varPsi}_{\rm{ sep},q}|,$ (54)

View in Article

$| {\varPsi}_{k \rm{sep}}\rangle = |{\varPsi}_{N_1}\rangle \otimes |{\varPsi}_{N_2}\rangle \otimes \cdots \otimes |{\varPsi}_{N_M}\rangle,$ (55)

View in Article

$\hat{\rho}_{k \rm{sep}} = \sum\limits_q p_q |{\varPsi}_{k \rm{sep},q} \rangle \langle {\varPsi}_{k \rm{sep},q}|.$ (56)

View in Article

$F_{\rm Q}[\hat{\rho}_{\rm{sep}}, \hat{J}_n] \leqslant N,$ (57)

View in Article

${\text{Δ}}\theta_{\rm{SQL}} = \dfrac{1}{\sqrt{m N}}.$ (58)

View in Article

$F_{\rm Q}[\hat{\rho}, \hat{J}_n] > N,$ (59)

View in Article

$F_{\rm Q}[\hat{\rho}_{k \rm{sep}}, \hat{J}_n] \leqslant s k^2+ r^2,$ (60)

View in Article

$F_{\rm Q}[\hat{\rho}_{k \rm{sep}}, \hat{J}_n] \leqslant N^2.$ (61)

View in Article

${\text{Δ}}\theta_{\rm{HL}} = \dfrac{1}{ N \sqrt{m}}.$ (62)

View in Article

${\text{ζ}}_{\rm R}^2 = \dfrac{N \left( {\text{Δ}}\hat{J}_{\perp} \right)^2}{\langle \hat{J}_s \rangle^2},$ (63)

View in Article

$\dfrac{N}{F_{\rm Q}[\hat{\rho},\hat{J}_{ n}]} \leqslant {\text{ζ}}^2_{\rm R},$ (64)

View in Article

$V^2 > \left(1-\dfrac{1}{N} \right)^2 +\dfrac{1}{N^2}.$ (65)

View in Article

$\begin{split}\hat{H}_{\rm{SM}} =\, & [q+\lambda \left( 2 \hat{N}_0-1 \right)]\left( \hat{N}_{+1} +\hat{N}_{-1} \right) \\ & + 2 \lambda \left(\hat{a}_{-1}^{\dagger}\hat{a}_{+1}^{\dagger}\hat{a}_0\hat{a}_0 + \hat{a}_{0}^{\dagger}\hat{a}_{0}^{\dagger}\hat{a}_{-1}\hat{a}_{+1} \right),\end{split}$ (66)

View in Article

$|\downarrow, {{P}}_{\downarrow} \rangle \rightarrow \alpha |\downarrow, {{P}}_{\downarrow} \rangle + \beta |\uparrow, {{P}}_{\uparrow} \rangle,$ (67)

View in Article

$\hat{U}_{{n}}(\theta) = {\rm e}^{-{\rm i} \theta \hat{J}_{{n}}},$ (68)

View in Article

$\left( \begin{array}{c} \hat{a}_{\rm{out}} \\ \hat{b}_{\rm{out}} \\ \end{array} \right) = {{M}} \left( \begin{array}{c} \hat{a}_{\rm{in}} \\ \hat{b}_{\rm{in}} \\ \end{array} \right),$ (69)

View in Article

${{M}} = \left( \begin{array}{cc} {\rm e}^{-{\rm i} \phi_{\rm t}} \cos\dfrac{\vartheta}{2} & -{\rm e}^{-{\rm i} \phi_{\rm r}} \sin \dfrac{\vartheta}{2} \\ {\rm e}^{{\rm i} \phi_{\rm r}} \sin \dfrac{\vartheta}{2} & {\rm e}^{{\rm i} \phi_{\rm t}} \cos\dfrac{\vartheta}{2} \end{array} \right),$ (70)

View in Article

${{J}}\equiv \left( \begin{array}{c} \hat{J}_x \\ \hat{J}_y \\ \hat{J}_z \\ \end{array} \right) = \dfrac{1}{2} \left( \begin{array}{c} \hat{a}^{\dagger}\hat{b}+ \hat{b}^{\dagger}\hat{a}\\ - {\rm i}\left( \hat{a}^{\dagger}\hat{b} - \hat{b}^{\dagger}\hat{a} \right) \\ \hat{a}^{\dagger}\hat{a} - \hat{b}^{\dagger}\hat{b} \\ \end{array} \right),$ (71)

View in Article

${{J}}_{\rm{out}} = {\rm e}^{+{\rm i} \theta \hat{J_{{n}}}} {{J}}_{\rm{in}}{\rm e}^{-{\rm i} \theta \hat{J_{{n}}}},$ (72)

View in Article

$|\psi_{\rm{out}}\rangle = {\rm e}^{- {\rm i} \theta \hat{J_{{n}}}} | \psi_{\rm{in}}\rangle.$ (73)

View in Article

${{M}}_{\rm{BS}} = \left( \begin{array}{cc} \cos\dfrac{\theta}{2} & -{\rm i} \sin \dfrac{\theta}{2} \\ -{\rm i} \sin \dfrac{\theta}{2} & \cos\dfrac{\theta}{2}\end{array} \right).$ (74)

View in Article

$\left( \begin{array}{c} \hat{J}_x \\ \hat{J}_y \\ \hat{J}_z \\ \end{array} \right)_{\rm{out}} = \left( \begin{array}{ccc} 1 & 0 &0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \\ \end{array} \right) \left( \begin{array}{c} \hat{J}_x \\ \hat{J}_y \\ \hat{J}_z \\ \end{array} \right)_{\rm{in}}.$ (75)

View in Article

${{M}}_{\rm{MZ}} = \left( \begin{array}{cc} \cos\dfrac{\theta}{2} & - \sin \dfrac{\theta}{2} \\ \sin \dfrac{\theta}{2} & \cos\dfrac{\theta}{2} \\ \end{array} \right).$ (76)

View in Article

$\left( \begin{array}{c} \hat{J}_x \\ \hat{J}_y \\ \hat{J}_z \\ \end{array} \right)_{\rm{out}} = \left( \begin{array}{ccc} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \\ \end{array} \right) \left( \begin{array}{c} \hat{J}_x \\ \hat{J}_y \\ \hat{J}_z \\ \end{array} \right)_{\rm{in}}. $ (77)

View in Article

$\hat{U}_{\rm{MZ}} = {\rm e}^{{\rm i} \dfrac{{\text{π}}}{2} \hat{J}_x} {\rm e}^{- {\rm i} \theta \hat{J}_z} {\rm e}^{-{\rm i} \dfrac{{\text{π}}}{2} \hat{J}_x} = {\rm e}^{- {\rm i} \theta \hat{J}_y}. $ ()

View in Article

$U({{x}}) = \dfrac{ \hbar {\varOmega}_1^2} { 4 {\varDelta}+ {\rm i} 2 {\varGamma}} \propto \dfrac{I({{x}})}{ 2 {\varDelta}+ {\rm i} {\varGamma}},$ (78)

View in Article

${\text{Δ}}\theta \!=\! \dfrac{1}{\sqrt{2} V}\! \dfrac{1}{|\sin (\theta/2)|}\! \dfrac{1} {\sqrt{m N}} \simeq \!\dfrac{\sqrt{2}}{|\sin (\theta/2)|} \dfrac{1}{M\!-\!1}\! \dfrac{1} {\sqrt{m N}},$ (79)

View in Article

$\dfrac{{\text{Δ}}g}{g} \simeq \dfrac{\sqrt{2}}{8 {\text{π}}} \dfrac{\omega^2 \lambda}{g} \dfrac{1}{M-1} \dfrac{1} {\sqrt{m N}},$ (80)

View in Article

$\hat{H} = \hat{H}_0 + \hat{H}_{\rm{int}} = \sum\limits_{i = 1}^{N} \dfrac{\alpha _{i}}{2} { {\sigma}} _{{m}}^{(i)}+\sum\limits_{\substack{ i,j = 1}}^{N}\dfrac{V_{ij}}{4}{ {\sigma}} _{{n}}^{(i)}{ {\sigma}} _{{n}}^{(j)},$ (81)

View in Article

$F_{\rm Q}[| \psi _{\rm{sep}}\rangle,\hat{H}] = f_{0}^{2}+f_{1}^{2}+f_{2}^{2},$ (82)

View in Article

$f_{0}^{2} = 4\left( {\text{Δ}}\hat{H}_{0}\right) ^{2} = \sum\limits_{i = 1}^{N}\alpha _{i}^{2} \big(1-\langle { {\sigma}} _{{m}}^{(i)}\rangle ^{2} \big),$ (83)

View in Article

$\begin{split} f_{1}^{2} =\, & 4\left( {\text{Δ}}\hat{H}_{1}\right) ^{2} = \sum\limits_{\substack{ i,j = 1 \\ i\neq j}}^{N}\dfrac{V_{ij}^{2}}{2}\big[ 1-\langle { {\sigma}} _{{n}}^{(i)}\rangle ^{2}\langle { {\sigma}} _{{n} }^{(j)}\rangle ^{2}\big] \\ & +\sum\limits_{\substack{ i,j,l = 1 \\ i\neq j\neq l}} ^{N}V_{ij}V_{il}\big[1-\langle { {\sigma}} _{{n}}^{(i)}\rangle ^{2}\big] \langle { {\sigma}} _{{n}}^{(j)}\rangle \langle \sigma _{\bf{n} }^{(l)}\rangle,\end{split}$ (84)

View in Article

$\begin{split} f_{2}^{2} & = 4\big( \left\langle \{\hat{H}_{0},\hat{H}_{1}\}\right\rangle -2\left\langle \hat{H}_{0}\right\rangle \left\langle \hat{H}_{1}\right\rangle \big) \\ & = 2\sum\limits_{\substack{i,j = 1 \\ i\neq j}}^{N}V_{ij}\alpha _{i}\big[ {{n}}\cdot {{m}}-\langle { {\sigma}} _{{n}}^{(i)}\rangle \langle { {\sigma}} _{{m}}^{(i)}\rangle \big]\langle { {\sigma}} _{{n} }^{(j)}\rangle.\end{split}$ (85)

View in Article

$\left\vert \psi_{\rm sep} \right\rangle \!=\! \bigotimes_{i = 1}^{N} \left(\!\!\sqrt{\dfrac{1\!+\! \langle \sigma _{{n}}^{(i)} \rangle }{2}}\left\vert \uparrow \right\rangle _{i}\!+\!{\rm e}^{-{\rm i}\varphi _{i}}\sqrt{\dfrac{1\!-\!\langle \sigma _{{n}}^{(i)} \rangle }{2}} \left\vert \downarrow \right\rangle _{i}\!\right)\!,$ (86)

View in Article

$F_{\rm Q}[|\psi_{\rm{sep}}\rangle,\hat{H}]\leqslant N + \gamma \dfrac{N}{2} + \gamma^2 \dfrac{N}{2}.$ (87)

View in Article

$\begin{split}\dfrac{F_{\rm Q}}{N} = \, & (1-a^2) + 2 \tilde{\gamma} a (1-a^2) \\ & + \tilde{\gamma}^2 \dfrac{1+2(N-2)a^2-(2N-3)a^4}{2(N-1)}, \end{split}$ (88)

View in Article

$\dfrac{F_{\rm Q}}{N} = 1+\dfrac{2N-1}{2(N-1)} \tilde{\gamma}^2 + O(\tilde{\gamma}^4),$ (89)

View in Article

$\dfrac{F_{\rm Q}}{N} = 2\tilde{\gamma} \dfrac{N-1}{2N-3} \sqrt{\dfrac{N-2}{2N-3}}+ \tilde{\gamma}^2 \dfrac{(N-1)}{2 (2N-3)}.$ (90)

View in Article

$\dfrac{F_{\rm Q}}{N} \leqslant 1 + \dfrac{4}{3\sqrt{3}} \tilde{\gamma} +\dfrac{(N-1)}{2(2N-3)} \tilde{\gamma}^2,$ (91)

View in Article

$\big(\Delta^2\theta_{\rm {est}}\big)_{\mu|\theta_0} = \sum\limits_{{{\mu}}}\big(\theta_{\rm {est}}({{\mu}})-\langle \theta_{\rm {est}} \rangle_{{{\mu}}|\theta_0} \big)^2 P({{\mu}}|\theta_0),$ (92)

View in Article

$\rm{MSE}(\theta_{\rm{est}})_{{{\mu}}|\theta_0} = \sum\limits_{{{\mu}}} \big( \theta_{\rm{est}}({{\mu}}) - \theta_0 \big)^2 P({{\mu}} \vert \theta_0),$ (93)

View in Article

$\rm{MSE}(\theta_{\rm{est}})_{{{\mu}}|\theta_0} =( {\varDelta}^2\theta_{\rm est})_{{{\mu}} \vert \theta_0} + \left(\langle\theta_{\rm{est}}\rangle_{{\mu}|\theta_0}-\theta_0\right)^2.$ (94)

View in Article

$\begin{split} & \left( \varDelta^2 \theta_{\rm{est}} \right)_{{{\mu}}|\theta_0} \geqslant \varDelta^2 \theta_{\rm BB} \\ & \quad \equiv \sup_{\theta_i,a_i,n} \dfrac{\left\{\sum_{i = 1}^{n}a_i[ \langle \theta_{\rm{est}} \rangle_{{{\mu}} \vert \theta_i} - \langle \theta_{\rm{est}} \rangle_{{{\mu}} \vert \theta_0} ]\right\}^2}{ \sum_{{{\mu}}} \left[\sum_{i = 1}^{n}a_i \mathcal{L}({{\mu}} \vert \theta_i,\theta_0)\right]^2 P({{\mu}}|\theta_0)},\end{split}$ (95)

View in Article

$\begin{split} & \left( \varDelta^2 \theta_{\rm{est}} \right)_{{{\mu}}|\theta_0} \geqslant \varDelta^2 \theta_{\rm BB}^{\rm{ub}} \\ &\quad \equiv \sup_{\theta_i,a_i,n} \dfrac{\left\{\sum_{i = 1}^{n}a_i[\theta_i - \theta_0 ]\right\}^2}{ \sum_{{{\mu}}} \left[\sum_{i = 1}^{n}a_i \mathcal{L}({{\mu}} \vert \theta_i,\theta_0)\right]^2 P({{\mu}}|\theta_0)}.\end{split}$ (96)

View in Article

$\begin{split} & \left( \varDelta^2 \theta_{\rm{est}} \right)_{{{\mu}}|\theta_0} \geqslant \varDelta^2 \theta_{\rm BB} \geqslant \varDelta^2 \theta_{\rm EChRB} \\ &\quad \geqslant \varDelta^2 \theta_{\rm ChRB} \geqslant \varDelta^2 \theta_{\rm CRB},\end{split}$ (97)

View in Article

$\centering P_{\rm{post}}(\theta|{{\mu}}) = \dfrac{P({{\mu}}|\theta) P_{\rm{pri}}(\theta)}{P_{\rm mar}({{\mu}})}.$ (98)

View in Article

$\left(\varDelta^{2}\theta_{\rm BL}({{\mu}})\right)_{\theta|{{\mu}}} = \int_{a}^{b} {\rm d}\theta \, P_{\rm{post}}(\theta|{{\mu}}) \big( \theta - \theta_{\rm BL}({{\mu}}) \big)^{2}.$ (99)

View in Article

$\varDelta^2 \theta_{\rm GB}({{\mu}}) = \dfrac{(f\left( {{\mu}},a,b\right) -1)^{2}}{\int_{a}^{b} {\rm d} \theta \, \dfrac{1}{P_{\rm{post}}(\theta|{{\mu}})} \left( \dfrac{{\rm d} P_{\rm{post}}(\theta|{{\mu}} )}{{\rm d} \theta}\right) ^{2} },$ (100)

View in Article

$\theta-\theta_{\rm BL}({{\mu}}) = \lambda_{{{\mu}}} \dfrac{{\rm d} \log P(\theta \vert {{\mu}})}{{\rm d} \theta},$ (101)

View in Article

$\begin{split}\left( \varDelta^{2}\theta_{\rm BL} \right)_{{{\mu}},\theta \vert \theta_0} & = \sum\limits_{{{\mu}}} \big( \varDelta^2 \theta_{\rm BL}({{\mu}}) \big)_{\theta \vert {{\mu}}} \, P({{\mu}} \vert \theta_0) \\ & = \sum\limits_{{{\mu}}} \int_{a}^{b} {\rm d} \theta \, P(\theta, {{\mu}} |\theta_0)\big( \theta-\theta_{\rm BL}({{\mu}})\big) ^{2}.\end{split}$ (102)

View in Article

$\varDelta^2 \theta_{\rm aGB} = \sum\limits_{{{\mu}}} \dfrac{(f\left( {{\mu}},a,b\right) -1)^{2}}{\int_{a}^{b} {\rm d} \theta \, \dfrac{1}{P_{\rm{post}}(\theta|{{\mu}})} \big( \dfrac{\partial P_{\rm{post}}(\theta|{{\mu}})}{\partial\theta} \big)^{2}} \, P({{\mu}}|\theta_{0}).$ (103)

View in Article

$\begin{split} P({{\mu}}|\theta_0) & = \prod_{i = 1}^{m}P(\mu_i|\theta_0)\\ &= \left(\dfrac{1+\cos(N \theta_0)}{2} \right)^{m_{+}} \left(\dfrac{1-\cos(N \theta_0)}{2} \right)^{m_{-}},\end{split}$ (104)

View in Article

$\theta_{\rm{MLE}}({{\mu}}) \equiv \rm{\arg \max_{\theta_0}} \{ P({{\mu}}|\theta_0) \}.$ (105)

View in Article

$\begin{split} P(\theta_{\rm{MLE}}|\theta_{0}) = \; &\sqrt{\dfrac{mF\left( \theta_{0}\right) }{2{\text{π}}} }{\rm e}^{-\frac{mF\left( \theta_{0}\right) }{2}\left( \theta_{0}-\theta _{\rm{MLE}}\right) ^2 }\\ & (m\gg 1).\end{split}$ (106)

View in Article

$P_{\rm pri}(\theta) = \dfrac{2}{{\text{π}}} \dfrac{{\rm e}^{\alpha\sin(2 \theta)^2}-1}{{\rm e}^{\alpha/2} I_0(\alpha/2)-1},$ (107)

View in Article

$P_{\rm{post}}(\theta|{{\mu}}) = \sqrt{\dfrac{m F(\theta_0)}{2 {\text{π}}}} {\rm e}^{-\textstyle\frac{m F(\theta_0)}{2} (\theta-\theta_0)^2} \quad (m \gg 1),$ (108)

View in Article

${F_{\rm Q}}[\hat \rho ,\hat q({{g}})] = {{{g}}^{\rm T}}{{ \varOmega}^{\rm T}}{{ \varOmega}}_{\hat \rho }^{ - 1}{{ \varOmega}{g}},$ (109)

View in Article

${F_{\rm Q}}[{\hat \rho _{{\text{Λ}}}},\hat q({{g}})] \leqslant 4{{{g}}^{\rm T}}{{ \varOmega}_{{{ \varPi}_{{\text{Λ}}}}({{\hat \rho }_{{\text{Λ}}}})}}{{g}},$ (110)

View in Article

${\text{ζ}}_{{\text{Λ}}}^2(\hat{\rho}): = \min_{{g}}4({{g}}^{\rm T}{ \varOmega}^{\rm T}{ \varOmega}_{{ \varPi}_{{\text{Λ}}}(\hat{\rho})}{ \varOmega}{{g}})({{g}}^{\rm T}{ \varOmega}_{\hat{\rho}}{{g}}).$ (111)

View in Article

$ \begin{align} {\text{ζ}}_{{\text{Λ}}}^{-2}(\hat{\rho}_{\rm{sep}})\leqslant 1. \end{align} $ (112)

View in Article

${{B}} ({\theta}) \geqslant \dfrac{[{{F}}({\theta})]^{-1}}{m} \geqslant \dfrac{[{{F}}_{\rm Q}({\theta})]^{-1}}{m},$ (113)

View in Article

$[{{F}}({\theta})]_{l,m} = \sum\limits_{\mu}\dfrac{\partial_l P({mu}|{\theta}) \partial_m P({mu}|{\theta})}{P({mu}|{\theta})},$ (114)

View in Article

$\begin{split}\dfrac{\partial \langle {\varTheta} \rangle }{\partial\theta} & = \dfrac{\partial }{\partial\theta} \sum\limits_{{{{\varepsilon}}}} P({{\varepsilon}}|\theta) {\varTheta} ({{{\varepsilon}}}) = \sum\limits_{{{{\varepsilon}}}} P({{\varepsilon}}|\theta){\varTheta} ({{{\varepsilon}}}) \dfrac{\partial L({{{\varepsilon}}} \vert \theta)}{\partial \theta} \\ & \equiv \left \langle {\varTheta} \dfrac{\partial L({{{\varepsilon}}} \vert \theta)}{\partial \theta} \right \rangle.\end{split}\tag{A1}$ (115)

View in Article

$\dfrac{\partial }{\partial\theta} \sum\limits_{{{{\varepsilon}}}} P({{\varepsilon}}|\theta) \!=\! \sum\limits_{{{{\varepsilon}}}} P({{\varepsilon}}|\theta) \dfrac{\partial L({{{\varepsilon}}} \vert \theta)}{\partial \theta} \!=\! \left \langle \dfrac{\partial L({{{\varepsilon}}} \vert \theta)}{\partial \theta} \right \rangle \!=\! 0 .\tag{A2}$ (116)

View in Article

$\bigg( \dfrac{\partial \langle {\varTheta} \rangle }{\partial\theta} \bigg)^2 = \left\langle \big( {\varTheta} ({{{\varepsilon}}}) -\langle {\varTheta} \rangle \big) \dfrac{\partial L({{{\varepsilon}}} \vert \theta)}{\partial \theta} \right\rangle^2.\tag{A3}$ (117)

View in Article

$\left\langle({\varTheta} - \langle {\varTheta} \rangle)^2 \right\rangle \left\langle \left(\dfrac{\partial L({{{\varepsilon}}} \vert \theta)}{\partial \theta}\right)^2 \right\rangle \geqslant \left(\dfrac{\partial \langle {\varTheta} \rangle}{\partial \theta}\right)^2,\tag{A4}$ (118)

View in Article

$F[\hat \rho (\theta ),\hat { E}({\epsilon})] = \sum\limits_{\epsilon} {\dfrac{{{\rm{Tr}}{{\left[ {{{\hat {\rm E}}}({\epsilon}){\partial _\theta }\hat \rho (\theta )} \right]}^{\rm{2}}}}}{{{\rm{Tr}}\left[ {{{\hat { E}}}({\epsilon})\hat \rho (\theta )} \right]}}} ,\tag{A5}$ (119)

View in Article

${\rm Tr}\left[\hat{ E}({{\varepsilon}})\partial_{\theta}\hat{\rho}(\theta)\right] = \Re\big({\rm Tr}\left[\hat{\rho}(\theta)\hat{L}_{\theta}\hat{ E}({{\varepsilon}})\right]\big),\tag{A6}$ (120)

View in Article

$\begin{split} &\Re\big({\rm Tr}\left[\hat{\rho}(\theta)\hat{L}_{\theta}\hat{ E}({{\varepsilon}})\right]\big)\leqslant \big|{\rm Tr}\left[\hat{\rho}(\theta)\hat{L}_{\theta}\hat{ E}({{\varepsilon}})\right]\big|^2\\ &\quad \leqslant {\rm Tr}\big[\hat{\rho}(\theta)\hat{ E}({{\varepsilon}})\big]{\rm Tr}\big[\hat{ E}({{\varepsilon}})\hat{L}_{\theta}\hat{\rho}(\theta)\hat{L}_{\theta}\big],\end{split}\tag{A7}$ (121)

View in Article

$\dfrac{\big({\rm Tr}\left[\hat{ E}({{\varepsilon}})\partial_{\theta}\hat{\rho}(\theta)\right]\big)^2}{{\rm Tr}\left[\hat{\rho}(\theta)\hat{ E}({{\varepsilon}})\right]}\leqslant {\rm Tr}\big[\hat{ E}({{\varepsilon}})\hat{L}_{\theta}\hat{\rho}(\theta)\hat{L}_{\theta}\big],\tag{A8}$ (122)

View in Article

$\begin{split} & F[ \hat{\rho}(\theta), \hat{ E}({{\varepsilon}}) ] \leqslant \sum\limits_{{{\varepsilon}}} {\rm Tr}\big[\hat{ E}({{\varepsilon}})\hat{L}_{\theta}\hat{\rho}(\theta)\hat{L}_{\theta}\big] \\ = & {\rm Tr}\big[\hat{\rho}(\theta)\hat{L}_{\theta}^2\big] = F_{\rm Q}[\hat{\rho}(\theta)],\end{split}\tag{A9}$ (123)

View in Article

$\left( {\text{Δ}}{\varTheta}_{\rm QCR} \right )^2 = \dfrac{\left( \dfrac{\partial \left\langle {\varTheta} \right \rangle }{\partial \theta} \right)^2}{F_{\rm Q}[\hat{\rho}(\theta)]},\tag{A10}$ (124)

View in Article

$\langle\theta_{\rm{est}}\rangle_{{\mu}|\theta} = \sum\limits_{{\mu}}\theta_{\rm{est}}({\mu})P({\mu}|\theta).\tag{A11}$ (125)

View in Article

$\mathcal{L}({\mu}|\theta_i,\theta_0) = \dfrac{P({\mu}|\theta_i)}{P({\mu}|\theta_0)},\tag{A12}$ (126)

View in Article

$\sum\limits_{{\mu}}\theta_{\rm{est}}({\mu})L({\mu}|\theta_i,\theta_0)P({\mu}|\theta_0) = \langle\theta_{\rm{est}}\rangle_{{\mu}|\theta_i},\tag{A13}$ (127)

View in Article

$\sum\limits_{{\mu}}\mathcal{L}({\mu}|\theta_i,\theta_0)P({\mu}|\theta_0) = \sum\limits_{{\mu}}P({\mu}|\theta_i) = 1,\tag{A14}$ (128)

View in Article

$\begin{split} & \sum\limits_{{\mu}}\left(\theta_{\rm{est}}({\mu})-\langle\theta_{\rm{est}}\rangle_{{\mu}|\theta_0}\right) \mathcal{L}({\mu}|\theta_i,\theta_0)P({\mu}|\theta_0) \\= & \langle\theta_{\rm{est}}\rangle_{{\mu}|\theta_i}-\langle\theta_{\rm{est}}\rangle_{{\mu}|\theta_0},\end{split}\tag{A15}$ (129)

View in Article

$\begin{split} & \sum\limits_{{\mu}}\left(\theta_{\rm{est}}({\mu})-\langle\theta_{\rm{est}}\rangle_{{\mu}|\theta_0}\right)\left(\sum\limits_{i = 1}^na_i\mathcal{L}({\mu}|\theta_i,\theta_0)\right) P({\mu}|\theta_0) \\ = & \sum\limits_{i = 1}^na_i\left(\langle\theta_{\rm{est}}\rangle_{{\mu}|\theta_i}-\langle\theta_{\rm{est}}\rangle_{{\mu}|\theta_0}\right),\end{split}\tag{A16}$ (130)

View in Article

$\begin{split} & \left(\sum\limits_{i = 1}^na_i\left(\langle\theta_{\rm{est}}\rangle_{{\mu}|\theta_i}-\langle\theta_{\rm{est}}\rangle_{{\mu}|\theta_0}\right)\right)^2 \\ & \leqslant \left(\varDelta^2\theta_{\rm{est}}\right)_{{\mu}|\theta_0} \left(\sum\limits_{{\mu}}\bigg(\sum\limits_{i = 1}^na_i \mathcal{L}({\mu}|\theta_i,\theta_0)\bigg)^2P({\mu}|\theta_0)\right),\end{split}\tag{A17}$ (131)

View in Article

$\left(\varDelta^2\theta_{\rm{est}}\right)_{{\mu}|\theta_0} = \sum\limits_{{\mu}}\left(\theta_{\rm{est}}({\mu})- \langle \theta_{\rm{est}}\rangle_{{\mu}|\theta_0}\right)^2P({\mu}|\theta_0),\tag{A18}$ (132)

View in Article

Zhi-Hong Ren, Yan Li, Yan-Na Li, Wei-Dong Li. Development on quantum metrology with quantum Fisher information[J]. Acta Physica Sinica, 2019, 68(4): 040601-1
Download Citation