• INFRARED
  • Vol. 41, Issue 1, 27 (2020)
Zhao-liang YU, Tong ZHANG, Qing-hai LIU, Wen-lian PENG, and Xiao-dong* DAI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1672-8785.2020.01.006 Cite this Article
    YU Zhao-liang, ZHANG Tong, LIU Qing-hai, PENG Wen-lian, DAI Xiao-dong*. Development of the Numerical Calculation Methods of the[J]. INFRARED, 2020, 41(1): 27 Copy Citation Text show less
    References

    [6] Waterman P C. Symmetry unitarity and geometry in electromagnetic scattering[J]. Phys Rev D, 1971, 3(4): 825-839.

    [7] Peterson B, Strom S. T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3)[J]. Phys Rev D, 1973, 8(10): 3661-3678.

    [8] Lakhtakia A, Varadan V K, Varadan V V. Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects[J]. Appl Opt, 1985, 24(23): 4146-4154.

    [9] Iskander M F, Lakhtakia A, Durney C H. A new procedure for improving the solution stability and extending the frequency range of EBCM[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(2): 317-324.

    [10] Doicu A, Wriedt T. Calculation of the T matrix in the null-field method with discrete sources[J]. J Opt Soc Am A, 1999, 16: 2539-2544.

    [11] Mishchenko M I, Travis L D. Capabilities and limitations of a current fortran implementation of the T-martrix method for randomly oriented rotationally symmetric scatterers[J]. J Quant Spectrosc Radiat Transfer, 1998, 60(3): 309-324.

    [12] Wu Y, Gu X, Cheng T. The single scattering properties of the aerosol particles as aggregated spheres[J]. J Quant Spectrosc Radiat Transfer, 2012, 113(12): 1454-1466.

    [13] Cheng T, Gu X, Wu Y. The optical properties of absorbing aerosols with fractal soot aggregates: Implications for aerosol remote sensing[J]. J Quant Spectrosc Radiat Transfer, 2013, 125: 93-104.

    [14] Appleyard P G. Infrared extinction performance of high aspect ratio carbon nanoparticles[J]. J Optic Pure Appl Optic, 2006, 8(2): 101-113.

    [15] Khlebtsov N G, Trachuk L A, Melnikov A G. The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium[J]. Opt Spectrosc, 2005, 98(1): 77-83.

    [17] Yee K S. Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302-307.

    [18] Taflove A. Computational electrodynamics: The finite difference time domain method[M]. Normood: Artech House, 1995.

    [19] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. J Comput Phys, 1994, 114(2): 185-200.

    [20] Yang P, Liou K N. Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models[J]. J Opt Soc Am A, 1995, 12(1): 162-176.

    [21] Namiki T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE Trans Microw Theory Tech, 1999, 47(10): 2003-2007.

    [22] Appleyard P G, Davies N. Modelling infrared extinction of high aspect ratio, highly conducting small particles[J]. J Optic Pure Appl Optic, 2004, 6(10): 977-990.

    [23] Appleyard P G. Modelled infrared extinction and attenuation performance of atmospherically disseminated high aspect ratio metal nanoparticles[J]. J Optic A:Pure Appl Opt, 2007, 9(3): 278-300.

    [24] Takei H, Bessho N, Ishii A. Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film[J]. Langmuir, 2014, 30(8): 2297-2305.

    [25] Hedley J. Modelling the optical properties of suspended particulate matter of coral reef environments using the finite difference time domain (FDTD) method[J]. Geo-Mar Lett, 2012, 32(2): 173-182.

    [26] Morgan M A, Mei K K. Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution[J]. IEEE Transactions on Antennas and Propagation, 1979, 27(2): 202-214.

    [27] Volakis J L, Chatterjee A, Kempel L. Finite element method for electromagnetics[M]. New York: IEEE Press, 1998.

    [28] Devi J, Saikia R, Datta P. Modeling of absorption and scattering properties of core-shell nanoparticles for application as nanoantenna in optical domain[J]. J Phys: Conference Series, 2016, 759: 012309.

    [29] Amarjit, Gangwar R P S. Implementation of artificial neural network for prediction of rain attenuation in microwave and millimeter wave frequencies[J]. IETE J Res, 2008, 54(5): 346-352.

    [30] Purcell E M, Pennypacker C R. Scattering and absorption of light by nonspherical dielectric grains[J]. Astrophys J, 1973, 186(2): 705-714.

    [31] Draine B T. Discrete-dipole approximation and its application to interstellar graphite grains[J]. Astrophys J, 1988, 333(2): 848-872.

    [32] Draine B T, Flatau P J. Discrete dipole approximation for scattering calculations[J]. J Opt Soc Am A, 1994, 11(11): 1491-1499.

    [33] McClain W M, Ghoul W A. Elastic light scattering by randomly oriented macromolecules: Computation of the complete set of observables[J]. J Chem Phys, 1986, 84(12): 6609-6622.

    [34] Singham S B, Salzman G C. Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation[J]. J Chem Phys, 1986, 84(5): 2658-2667.

    [35] Varadan V V, Lakhtakia A, Varadan V K. Scattering by three-dimensional anisotropic scatterers[J]. IEEE Transactions on Antennas And Propagation, 1989, 37(6): 800-802.

    [36] Lakhtakia A, Mulholland G W. On two numerical techniques for light scattering by dielectric agglomerated structures[J]. J Res Nat Inst Stan Tech, 1993, 98(6): 699-716.

    [37] Near R D, Hayden S C, Hunter R E. Rapid and efficient prediction of optical extinction coefficients for gold nanospheres and gold nanorods[J]. J Phys Chem C, 2013, 117(45): 23950-23955.

    [38] Lee T W. Orientation-averaged light-extinction characteristics of compound particles including aggregate effects[J]. Opt Soc Am A, 2005, 22(3): 514-517.

    YU Zhao-liang, ZHANG Tong, LIU Qing-hai, PENG Wen-lian, DAI Xiao-dong*. Development of the Numerical Calculation Methods of the[J]. INFRARED, 2020, 41(1): 27
    Download Citation