• Photonics Research
  • Vol. 13, Issue 4, 976 (2025)
Xunjun He1, Mingzhong Wu1, Guangjun Lu2,*, Ying Zhang3, and Zhaoxin Geng4,5
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
  • 2Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin 541004, China
  • 3College of Science, Harbin University of Science and Technology, Harbin 150080, China
  • 4School of Information Engineering, Minzu University of China, Beijing 100081, China
  • 5e-mail: zxgeng@muc.edu.cn
  • show less
    DOI: 10.1364/PRJ.545173 Cite this Article Set citation alerts
    Xunjun He, Mingzhong Wu, Guangjun Lu, Ying Zhang, Zhaoxin Geng, "High-efficiency multi-channel focusing and imaging enabled by polarization-frequency multiplexing non-interleaved metasurfaces," Photonics Res. 13, 976 (2025) Copy Citation Text show less
    References

    [1] N. He, T. B. Guo, J. H. Tian. High-speed duplex free space optical communication system assisted by a wide-field-of-view metalens. ACS Photon., 10, 3052-3059(2023).

    [2] J. X. Yan, Q. S. Wei, Y. Liu. Single pixel imaging key for holographic encryption based on spatial multiplexing metasurface. Small, 18, 2203197(2022).

    [3] V. Dhamgaye, D. Laundy, H. Khosroabadi. Alvarez varifocal X-ray lens. Nat. Commun., 14, 4582(2023).

    [4] M. Bawart, A. Jesacher, P. Zelger. Modified Alvarez lens for high-speed focusing. Opt. Express, 25, 29847-29855(2017).

    [5] R. Pompili, M. P. Anania, M. Bellaveglia. Focusing of high-brightness electron beams with active-plasma lenses. Phys. Rev. Lett., 121, 174801(2018).

    [6] M. Humphreys, J. P. Grant, I. E. Carranza. Video-rate terahertz digital holographic imaging system. Opt. Express, 26, 25805-25813(2018).

    [7] N. F. Yu, P. Genevet, M. A. Kats. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [8] S. J. Li, Z. Y. Li, X. B. Liu. Transmissive digital coding metasurfaces for polarization-dependent dual-mode quad orbital angular momentum beams. ACS Appl. Mater. Interfaces, 15, 23690-23700(2023).

    [9] H. Ahmed, M. A. Ansari, L. Paterson. Metasurface for engineering superimposed Ince-Gaussian beams. Adv Mater., 36, 2312853(2024).

    [10] M. Huang, B. Zheng, R. C. Li. Evolutionary games-assisted synchronization metasurface for simultaneous multisource invisibility cloaking. Adv. Funct. Mater., 34, 2401909(2024).

    [11] R. C. Li, M. Huang, Y. J. Zou. Experimental realization of a one-directional broadband transmissive cloak in microwaves. Laser Photon. Rev., 18, 2400611(2024).

    [12] Z. Jiang, J. H. Lu, J. Y. Fan. Polarization-multiplexing Bessel vortex beams for polarization detection of continuous terahertz waves. Laser Photon. Rev., 17, 2200484(2023).

    [13] J. T. Tian, W. H. Cao. Reconfigurable flexible metasurfaces: from fundamentals towards biomedical applications. PhotoniX, 5, 2(2024).

    [14] X. F. Zang, H. Z. Ding, Y. Intaravanne. A multi-foci metalens with polarization-rotated focal points. Laser Photon. Rev., 13, 1900182(2019).

    [15] B. S. Yao, X. F. Zang, Z. Li. Dual-layered metasurfaces for asymmetric focusing. Photon. Res., 8, 830-843(2020).

    [16] B. S. Yao, X. F. Zang, Y. Zhu. Spin-decoupled metalens with intensity-tunable multiple focal points. Photon. Res., 9, 1019-1032(2021).

    [17] Y. W. Zhou, T. Zhang, G. N. Wang. Directional phase and polarization manipulation using Janus metasurfaces. Adv. Sci., 11, 2406571(2024).

    [18] H. X. Chi, X. F. Zang, T. Zhang. Metasurface enabled multi-target and multi-wavelength diffraction neural networks. Laser Photon. Rev., 19, 2401178(2024).

    [19] X. B. Chen, Y. H. Li, J. Y. Zhou. Systematic design method for generation, storage, and reconstruction of holographic images. Opt. Express, 31, 20941-20954(2023).

    [20] Y. Q. Liu, Y. Zhu, H. C. Yin. Broadband high-efficiency plasmonic metalens with negative dispersion characteristic. Photon. Res., 12, 813-820(2024).

    [21] S. Q. Chen, W. W. Liu, Z. C. Li. Metasurface-empowered optical multiplexing and multifunction. Adv Mater., 32, 1805912(2020).

    [22] X. Zhang, S. Q. Zhu, P. J. Li. Non-interleaved four-channel metasurfaces for simultaneous printing and holographic imaging. Small Struct., 4, 2300054(2023).

    [23] E. Maguid, I. Yulevich, M. Yannai. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light Sci. Appl., 6, e17027(2017).

    [24] M. Yannai, E. Maguid, A. Faerman. Order and disorder embedded in a spectrally interleaved metasurface. ACS Photon., 5, 4764-4768(2018).

    [25] X. Zhang, S. Q. Zhu, P. J. Li. Alias transformation of structured beam and holography in real and fourier space based on dielectric metasurface. Laser Photon. Rev., 18, 2301070(2024).

    [26] H. Zhao, C. M. Zhang, J. Y. Guo. Metasurface hologram for multi-image hiding and seeking. Phys. Rev. Appl., 12, 054011(2019).

    [27] T. Wu, X. Q. Zhang, Q. Xu. Dielectric metasurfaces for complete control of phase, amplitude, and polarization. Adv. Opt. Mater., 10, 2101223(2022).

    [28] J. T. Li, Z. Yue, J. Li. Diverse terahertz wavefront manipulations empowered by the spatially interleaved metasurfaces. Sci. China Inf. Sci., 66, 132301(2023).

    [29] Y. Gou, H. F. Ma, L. W. Wu. Non-interleaved polarization-frequency multiplexing metasurface for multichannel holography. Adv. Opt. Mater., 10, 2201142(2022).

    [30] M. Z. Wu, X. J. He, G. J. Lu. Multi-mode non-diffraction vortex beams enabled by polarization-frequency multiplexing transmissive terahertz metasurfaces. J. Appl. Phys., 136, 103102(2024).

    [31] H. X. Xu, L. Han, Y. Li. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control. ACS Photon., 6, 211-220(2018).

    [32] H. Li, C. L. Zheng, S. X. Duan. Polarization detection of terahertz waves using all-silicon metasurfaces with tightly focusing behavior. Laser Photon. Rev., 17, 2300428(2023).

    [33] Y. F. Jiang, W. W. Liu, Z. C. Li. Linear and nonlinear optical field manipulations with multifunctional chiral coding metasurfaces. Adv. Opt. Mater., 11, 2202186(2023).

    [34] G. T. Park, J. H. Kim, S. Lee. conformal antireflective multilayers for high-numerical-aperture deep-ultraviolet lenses. Adv. Opt. Mater., 12, 2401040(2024).

    [35] A. Arbabi, Y. Horie, A. J. Ball. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [36] J. X. Zhang, C. N. Xu, P. Sebbah. Diffraction limit of light in curved space. Photon. Res., 12, 235-243(2024).

    [37] K. Y. Cheng, Z. Y. Wei, Y. C. Fan. Realizing broadband transparency via manipulating the hybrid coupling modes in metasurfaces for high-efficiency metalens. Adv. Opt. Mater., 7, 1900016(2019).

    [38] Y. Q. Liu, J. H. Sun, Y. C. Shu. High numerical aperture and large focusing efficiency metalens based on multilayer transmitarray elements. Opt. Laser Eng., 147, 106734(2021).

    [39] Y. Q. Liu, Z. R. Ren, Y. C. Shu. Broadband, large-numerical-aperture and high-efficiency microwave metalens by using a double-layer transmissive metasurface. Appl. Phys. Express, 15, 014003(2022).

    [40] Y. Q. Liu, Y. Zhu, Y. Wang. Monolithically integrated wide field-of-view metalens by angular dispersionless metasurface. Mater. Des., 240, 112879(2024).

    [41] H. G. Hao, Z. Cai, P. Tang. Four-channel near-field focusing metasurface lens based on frequency-polarization multiplexing. Opt. Commun., 565, 130652(2024).

    [42] H. Li, Y. B. Li, J. L. Shen. Low-profile electromagnetic holography by using coding Fabry–Perot type metasurface with in-plane feeding. Adv. Opt. Mater., 8, 1902057(2020).

    [43] W. P. Wan, W. H. Yang, H. Feng. Multiplexing vectorial holographic images with arbitrary metaholograms. Adv. Opt. Mater., 9, 2100626(2021).

    [44] Z. J. Yang, P. S. Huang, Y. T. Lin. Asymmetric full-color vectorial meta-holograms empowered by pairs of exceptional points. Nano Lett., 24, 844-851(2024).

    [45] J. W. Wu, Z. X. Wang, L. Zhang. Anisotropic metasurface holography in 3-D space with high resolution and efficiency. IEEE Trans. Antennas Propag., 69, 302-316(2020).

    [46] Z. X. Wang, J. W. Wu, L. W. Wu. High efficiency polarization-encoded holograms with ultrathin bilayer spin-decoupled information metasurfaces. Adv. Opt. Mater., 9, 2001609(2021).

    [47] Z. C. Wang, X. M. Ding, K. Zhang. Huygens metasurface holograms with the modulation of focal energy distribution. Adv. Opt. Mater., 6, 1800121(2018).

    [48] K. Y. Zhang, Y. Q. Lin, Y. Qiu. Nanoimprinted TiO2 metasurfaces with reduced meta-atom aspect ratio and enhanced performance for holographic imaging. Materials, 17, 2273(2024).

    [49] L. Zhu, J. X. Wei, L. Dong. Four-channel meta-hologram enabled by a frequency-multiplexed mono-layered geometric phase metasurface. Opt. Express, 32, 4553-4563(2024).

    Xunjun He, Mingzhong Wu, Guangjun Lu, Ying Zhang, Zhaoxin Geng, "High-efficiency multi-channel focusing and imaging enabled by polarization-frequency multiplexing non-interleaved metasurfaces," Photonics Res. 13, 976 (2025)
    Download Citation